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Elastic instabilities are identified as flow instabilities occurring in the presence of low inertial effects, induced by the
combination of strong elastic forces with nonlinearities of the flow. In continuous flow laminar mixing applications, the
onset of these instabilities is likely to occur in the window of applied flow rates; therefore, it is important to understand
the effects of their onset on the process efficiency. In this work, we investigated experimentally the onset of elastic
instabilities in two tubular static mixers with different geometric features, i.e. the Kenics helical mixer and the SMB-
R mixer, the latter characterised by a double X-shaped bars geometry. We obtained concentrations maps at various
mixer lengths by means of Planar Laser Induced Fluorescence techniques. To deduce a generalised effect of the fluid
elasticity on the mixing patterns, we tested three fluids with different rheological behaviour – a Boger fluid and two
shear-thinning fluids. For all cases, we observed deviations from the Newtonian benchmark as soon as the Deborah
number exceeded unity, even though different transitions occurred as the mean flow rate increased. The effect of the
instability on the mixing patterns strongly depended on the different kinematics induced by the two geometries: for
the helical mixer the typical lamellar structure is not recovered and the two liquid streams remain unmixed, whilst for
the SMB-R the concentration maps are strongly unsteady, showing temporally and spatially chaotic fluctuations of the
mass fraction. In both cases, the instabilities worsen the mixing efficiency compared to the Newtonian case.

I. INTRODUCTION

Mixing operations in laminar flow conditions are encoun-
tered in many industrial applications involving complex flu-
ids. In these conditions, a rigorous way to characterize the
kinematics of fluid mixing is extremely important, since lo-
cal segregated areas are more likely to occur than in turbu-
lent flows, where the unsteady velocity field continuously re-
orients the fluid elements in the Lagrangian reference frame,
promoting mixing in the fluid bulk1. Interesting results have
been derived by applying concepts developed for the study of
chaotic dynamical systems to laminar mixing applications2.
Experimental and computational studies have demonstrated
that mixing in laminar conditions can be induced by a peri-
odicity in the flow and that the evolution of partially mixed
structures can be described based on the stretching and folding
of fluid elements placed into the flow, following the concept
of the ’baker’s transformation’3–6. Stretching directly affects
the generation rate of intermaterial area and the distribution
of striation thickness in the flow, while folding is central for
putting in contact the different liquid streams, thus promoting
mixing in a direction orthogonal to the main velocity field.

Static mixers represent the direct technological application
of this principle. Identified also as motionless mixers, they
consist of a series of fixed elements, placed in a pipe with the
intent of re-orientating the flow to promote radial mixing. Sig-
nificant interest has developed in the use of motionless mix-
ers for laminar flow applications, driven by the necessity to
intensify the traditional batch processes by substituting them
with continuous processes. Their popularity stems from their

a) The authors to whom correspondence may be addressed:
p.angeli@ucl.ac.uk, l.mazzei@ucl.ac.uk.

relatively simple implementation (energy is provided through
standard pumping equipment) and design flexibility compared
to other in-line mixing devices (e.g. extruders); besides, if
properly designed, static mixers offer highly reliable perfor-
mance over a wide range of operating conditions7,8. Given
the technological relevance of these devices, numerous stud-
ies can be found in the literature focusing on the general per-
formance of different designs9–15 as well as attempts to find a
generalised theoretical approach for the design of the mixers
based on the study of chaotic systems. Most of these studies
focus on Newtonian or generalised Newtonian fluids16–19.

In spite of the ubiquity of complex fluids in industrial ap-
plications, investigations on the effect of non-linear rheologi-
cal behaviour on the mixing performance in continuous flow
systems are scarce and primarily focused on inelastic shear-
thinning fluids10,14,20–22. This is due to the relatively simple
implementation of generalized Newtonian constitutive equa-
tions in CFD codes. The performance of in-line mixing de-
vices has been investigated much less experimentally, because
of the high level of sophistication and resources needed to cap-
ture the mixing dynamics with the same level of detail as that
achieved numerically. But the importance of experimental ob-
servations should not be underestimated when dealing with
complex fluids. Indeed, a recent experimental work of Lim
et al.23 highlighted a modest detrimental effect of CMC so-
lutions (widely used as inelastic shear-thinning model fluids)
on the mixing rate in a SMX mixer, a finding that is oppo-
site to that of many numerical studies, which usually show no
effects or positive effects when inelastic shear thinning fluids
are used14,24,25.

The influence of complex rheological behaviour such as
fluid elasticity, as well as the combination of elasticity and
shear-thinning, on mixing dynamics is still not fully under-
stood. The strong nonlinearities induced by the presence
of polymer molecules can severely complicate viscoelastic
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flows. Polymer chains confer an extra tensile stress to the fluid
streamlines, which depends on the flow history through a char-
acteristic relaxation time λ 26. In the low Reynolds regime,
typical of laminar mixing applications, pure elastic instabil-
ities can arise from the interaction of curvilinear streamlines
with the extra elastic stresses, which act along the streamlines.
Such instabilities have been observed experimentally for sim-
ple viscometric27–30 and more complex flows31–37. Theoreti-
cal works based on linear stability analysis of nonlinear rheo-
logical constitutive models showed the possibility of predict-
ing the onset of flow bifurcations induced by pure elasticity
and their nature for simple flows, i.e. cone-plate and parallel-
plate rheometric flows and Taylor-Couette flow30,38,39. For
more complex two-dimensional geometries, McKinley and
co-workers40,41 introduced a dimensionless criterion to anal-
yse the onset of purely elastic instabilities and their sensitivity
to the flow geometry and fluid rheological properties, which in
simple flows they proved to reduce to well-established results.

For mixing applications, the presence of flow bifurcations
induced by elasticity is a significant issue; however, a direct
translation of the theoretical findings cited above is arduous,
given the intrinsic complexity of the flow kinematics in tra-
ditional mixers. To these days, the effect of elasticity is con-
troversial. Some fundamental insights have been gained by
studying viscoelastic flows in 2-D or simplified 3-D geome-
tries. Generally, elastic fluids seem to induce poorer mixing
as the shear rate is increased owing to an increased resistance
to stretching, which induces the formation of large unmixed
regions42,43. However, depending on the flow conditions, in
some geometries elasticity can improve mixing thanks to the
onset of elastic turbulence44–48. These discrepancies under-
line how the effect of nonlinear rheology on mixing strongly
depends on the mixing protocol and is difficult to predict the-
oretically for complex flows, thus making experimental inves-
tigations necessary. To the best of the authors’ knowledge, the
recent paper of Ramsay et al.49 is the only study available in
the literature on the effect of elasticity on the mixing perfor-
mance of static mixers. They found that viscoelasticity signif-
icantly affects the mixing patterns at the exit of a 6-element
Kenics mixer by inducing large segregated zones and tempo-
ral fluctuations of concentration, which they attributed to the
presence of elastic instabilities. Following these observations,
further experimental investigations are required to clearly es-
tablish the onset of the instabilities and their effects on the
mixing efficiency.

The aim of this work is to investigate experimentally the
onset of elastic instabilities in static mixers and their effect
on the topology of the mixing patterns, depending on the spe-
cific geometry of the mixer and the fluid rheology. Two dif-
ferent mixer geometries were selected to highlight the im-
pact of different flow fields on the fluid response, which, in
turn, influence the mixing dynamics, i.e. the Kenics helical
mixer and the SMB-R mixer. Planar Laser Induced Fluores-
cence (PLIF) measurements were performed to capture instan-
taneous concentration maps for different operating conditions,
whilst pressure drop measurements allowed continuous mon-
itoring of the flow resistance. Three different polymeric solu-
tions were used to investigate the effect of pure elasticity and

the combination of elasticity and shear-thinning behaviour.
All experimental observations are discussed and summarised
using the relevant dimensionless groups.

The article is organised as follows. In Section II, we
describe the experimental setup and the techniques imple-
mented, followed by the rheological characterisation of the
model fluids employed and the definition of the dimensionless
numbers. The experimental results are then presented and dis-
cussed in Section III for each of the two geometries. Finally,
we report our conclusions in Section IV.

II. MATERIALS AND METHODS

A. Experimental apparatus and mixer geometries

Two geometries were selected for the experimental inves-
tigations, the Kenics helical mixer (Euromixers Ltd) and the
SMB-R mixer (Bayer Licence, Stamixco Ltd). Both geome-
tries were chosen for direct insertion in a circular pipe. The
first mixer is one of the standard geometries used for in-line
mixing applications. Owing to its simplicity, this geometry
has been extensively studied in the literature9,11,50–52, thus
representing a good benchmark for this study. The mixer is
constituted by a total of six metal helical elements, with twist-
ing angle of 180 and aspect ratio AR = L/D = 1.35, with L
and D being the length and the diameter of the mixing ele-
ment, respectively. To ensure correct functioning, elements
with opposite twisting direction must be inserted one after the
other with the leading edge at 90 with the trailing edge of the
previous element. The elements are welded together in cou-
ples, hence experimental investigations can be carried out for
mixer lengths of two, four or six elements. The other geom-
etry belongs to a different type of inline mixers design, com-
monly used in polymer processing8, characterised by higher
compactness and a more complex geometry of its internal sur-
faces. The mixer has a total of eight detachable elements and,
as for the helical mixer, each consecutive element is rotated
at 90 relative to the previous. The characteristic dimensions
and CAD drawings of both geometries can be found in the
supplementary information (SI-1).

Experiments were carried out in a modular continuous flow
rig to allow design flexibility. A schematic of the experimen-
tal setup is shown in Fig. 1. For each fluid tested, two liquid
streams, one dyed and one undyed, were pumped separately,
but with equal volumetric flow rates, through two gear pumps
(AxFlow Ltd). For each liquid stream, a gear flow meter
(Max Machinery, Inc.) allowed continuous monitoring of the
flow rates before the streams entered the horizontal test sec-
tion, which was made of transparent poly-(methyl methacry-
late) (PMMA) to allow optical access. The two streams were
brought together through a Y-junction to form one stream with
a central vertical interface between the dyed and the undyed
materials. The junction was designed to maintain constant
average velocities in the flow upstream and downstream of
the junction (inset in Fig. 1). The horizontal rig (ID 25.4
mm) consisted of three modular sections, (i) a mixing sec-
tion, (ii) a visualization section, and (iii) an outlet section.
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Viscoelastic flow instabilities in static mixers 3

The visualisation section was encased in a PMMA rectan-
gular box, which was filled with a glycerol/water mixture to
match the refractive index of PMMA and avoid any optical
artefacts induced by the curvature of the pipe, whilst the out-
let section was a custom-made L-shaped junction with a ver-
tical flat surface that allowed direct observation of the pipe
cross-section. All the sections had the same internal diameter
and were assembled together through external flanges to as-
sure perfect alignment and minimise disturbances in the flow.
For each mixer geometry, the mixing section was fabricated
to assure precise fitting on the static elements. To maintain
in place the mixing elements and ensure consistency of their
position along the pipe length for different experiments, a
small concentric restriction was incorporated at the end of the
mixing section (local reduction of the internal diameter ∼1
mm). This implies that the exit of the last mixing element
was always fixed, independently of the number of elements
inserted. Pressure ports were drilled at the inlet and outlet
of the mixing sections allowing pressure drop measurements
through a high performance differential pressure transmitter
(model 266MST, ABB). All experiments were conducted at a
controlled room temperature of 21 C. The fluid temperature
was continuously monitored through a thermocouple inserted
in an additional port placed at the end of the mixing unit, con-
firming that the operating temperature was maintained at 21
C.

B. Planar Laser Induced Fluorescence (PLIF) setup

To capture the instantaneous concentration maps induced
by the two mixers, planar laser induced fluorescence (PLIF)
experiments were carried out at different operating conditions.
Rhodamine 6G (R-6G) was added as fluorescent dye in one
of the fluid streams at a concentration of 8.5× 10−8 mol/L,
which is within the range of concentrations for which IG ∝ c,
where IG and c are the greyscale intensity of the image and
the dye concentration, respectively (see SI-2 for details on the
calibration method). The PLIF system consisted of a continu-
ous laser (Diode-Pumped Solid-State series with output power
of 3000 mW and wavelength λ = 532 nm, Laserglow Tech-
nologies) and a high speed camera (Phantom v1212, Ametek
Inc.) equipped with a mono-zoom Nikon Lens, which gave
a spatial resolution of 24 µm/pixel, and an orange filter with
cut-on wavelength of 570 nm, which eliminates any reflection
on the pipe or spurious light of the laser. The laser unit was
equipped with two cylindrical lenses (25 mm and 15 mm) to
create a narrow laser plane of 1 mm thickness. The gener-
ated horizontal plane was reflected on a 45 silver coated mir-
ror to form a vertical plane, perfectly perpendicular to the pipe
cross-section (see schematic in Fig. 1). The laser sheet and the
camera focal plane were fixed downstream of the mixing ele-
ments, at 3/4 of the total length of the visualisation box (ap-
proximately 20 cm from the exit of the last mixing element).
This choice is related to the necessity of reducing reflections
from the pipe walls by minimising the distance between the
camera lens and the focal plane. Preliminary tests, conducted
by changing the z-position of the focal plane along the visu-

alisation section, assured that the maps remained unchanged
after exiting the last mixing element. In addition, at the lowest
flow rate investigated, the Peclet number was O(107), thus en-
suring that any effect of diffusion was negligible in the axial
direction after the mixing elements for all experiments con-
ducted.

Images were recorded continuously with a frame rate of 100
fps from the start-up of the pumps. Flow conditions were fur-
ther monitored through pressure drop measurements (acqui-
sition rate of 5000 Hz) to ensure maps were recorded after
steady state conditions were reached. To map the onset of the
instabilities and understand the changes in the mixing mech-
anism induced by different rheological properties, the exper-
iments were repeated for each fluid at increasing flow rates,
first at the minimum number of elements possible (i.e. 2 for
the Kenics and 1 for the SMB-R), and then gradually adding
more elements. The images recorded over the entire steady-
state period were then averaged, when the concentration pro-
files did not present any time variation, and normalised to ob-
tain greyscale maps of the mass fraction of dyed stream C
using the following relation53:

C(x,y) =
I(x,y)− ID(x,y)
IB(x,y)− ID(x,y)

(1)

where I is the recorded intensity and ID and IB are the in-
tensity values of the dark and the bright reference images, re-
spectively. For the unsteady cases, the same normalisation
was applied to each single frame, without averaging consec-
utive frames. All the intensity values were normalised using
the corresponding pixel value to remove any bias related to
inhomogeneities in the illumination plane.

The flow resistance was also evaluated in all conditions
tested. A friction factor fF was calculated from the pressure
drop measurements to obtain a proper comparison between
different fluids, using the following relation54:

fF =
1
2

∆P

Ne
( L

D

)
ρ
(U

ε

)2 (2)

where ∆P is the pressure drop measured over the whole
mixer length, Ne is the total number of mixing elements, L and
D are the length and diameter of the single mixing element, re-
spectively, ρ is the density of the fluid, U is the mean velocity
evaluated considering an empty pipe and ε is the porosity of
the mixer.

C. Fluids preparation

Four fluids were used for the experimental investigation:
one Newtonian fluid as benchmark case, one Boger fluid and
two shear-thinning fluids with different flux indexes. The
Newtonian fluid (from now on referred to as fluid N) is
a solution of 20% wt glycerol (Glycerol >99% FCC, sup-
plied by Sigma-Aldrich, UK) and 80% wt polyethylene gly-
col Mw = 400 Da (PEG400, supplied by Sigma-Aldrich, UK).
This mixture has a viscosity of 0.211 Pa s and was chosen to
reduce the viscosity of glycerol and cover a wide range of the
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Fluid

Dyed Fluid

ID = 12.7mm

(a) (b)

ID = 25.4mm

Continuous laser

High-speed 

camera

MIXING SECTION VISUALISATION 

SECTION

(c)

(d)

FIG. 1. Schematic of the experimental setup used for the PLIF measurements. The first inset shows (a) the top view of the Y-junction inlet
and (b) the distribution of the streamlines in the cross-section as they enter the mixing section. The second inset shows a three-dimensional
schematic of the housing of the mixing elements in the tube for (c) the Helical and (d) the SMB-R geometry. The orange arrows show the flow
direction. Further details of the mixing elements characteristics are provided in SI-1.

Reynolds number (Re) for the Newtonian benchmark investi-
gations, whilst maintaining a refractive index close to that of
PMMA (RIPMMA = 1.4905, RIN = 1.47) to optimise the clar-
ity of the images. The Boger fluid (fluid B) was obtained by
adding 200ppm of polyacrylamide (PAA, Mw ≈ 5× 106 Da,
supplied by Sigma-Aldrich, UK) in pure glycerol, whilst the
shear-thinning fluids (fluid ST1 and fluid ST2) were prepared
by dissolving Xanthan Gum (XG, supplied by Sigma-Aldrich,
UK) in water/glycerol solutions. Densities for all solutions
were measured through a calibrated picnometer at room tem-
perature. Specifications of the fluid compositions, densities
and solvent viscosities are summarised in Table I. Note that
the value measured for the solvent viscosity of the Boger fluid
reveals that the precise composition of the glycerol used is
around 98% wt55.

Given the large volumes of solutions required (approxi-
mately 25 L of liquid per set of experiments with one type
of mixer), polymers were added in stock solutions, which
were subsequently diluted with the correct amount of glyc-
erol. Specifically, for fluid B, a stock solution at 500ppm of
PAA in glycerol was prepared by gently dispersing the PAA in
glycerol. During this stage, glycerol was kept at a temperature
of 50 C to reduce its viscosity and facilitate polymer dissolu-
tion. During the dispersion step, it was important to form a
swirling flow in the container and gradually pour the powder
in the centre of the vortex to avoid agglomeration. Similarly,
for the two shear-thinning fluids, the stock solutions were pre-
pared by adding XG to warm milli-Q water (DW, temperature
kept at 40 C) in the exact ratio required for the final solutions.
The stock solutions were stirred gently with a magnetic stirrer
for at least 24 hours to ensure full dispersion of the polymer
powders. Since glycerol is used in all fluids investigated, a
stock solution of Rhodamine 6G (supplied by Sigma-Aldrich,

UK) at a concentration of 10−6 mol/L in pure glycerol was
also prepared beforehand. The experimental fluids were fi-
nally obtained by adding the proper amount of glycerol (par-
tially from the dyed stock to obtain the dyed fluid) to the stock
solutions. The final batches were stirred for 12 hours with a
three blades marine propeller at low rotational speed. Once
they were fully homogenised, the fluids were loaded in the
tanks of the setup and left to rest at least for 3 days. To check
the consistency in the composition of the experimental fluids,
densities and viscosity measurements were performed before
and after each experiment with few samples of fluids, showing
no effect of polymer degradation.

D. Rheological characterisation

The rheological properties of all the fluids were measured in
an Anton Paar MCR302 stress-controlled rotational rheome-
ter, equipped with a Peltier plate to precisely control the oper-
ating temperature and a cone-plate geometry (OD: 50 mm and
truncation angle of 1). For all measurements, sample menisci
were sealed with silicon oil (4.5∗10−3 Pa s) to avoid solvent
evaporation. Steady-shear flow tests were performed to ob-
tain the flow curves of all the experimental fluids at 21 C. The
tests were performed by ramping up the shear rate γ̇ from 0.01
to 1000 1/s. Viscosity values at different shear rates are pre-
sented for all the viscoelastic solutions in Fig. 2. As can be ob-
served, the Boger fluid maintains a constant viscosity through-
out the range of shear rates investigated (average value equal
to 0.943±0.025 Pa s), whilst the two XG solutions present a
shear-thinning behaviour. Note that the change in the solvent
compositions of the XG solutions was forced by the need to
obtain a strongly pronounced shear-thinning behaviour with-
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Viscoelastic flow instabilities in static mixers 5

TABLE I. Composition, density and solvent viscosity ηs of the test fluids. For all non-Newtonian fluids, ηs is the viscosity of the solvent
before polymer addition

Glycerol (% wt) PEG400 (% wt) DW (% wt) PAA (% wt) XG (% wt) ρ (g cm−3) ηs (Pa s)
Fluid N 20 80 − − − 1.133 0.211
Fluid B 100* − − 0.02 − 1.258 0.854
Fluid ST1 90 − 10 − 0.05 1.237 0.21
Fluid ST2 70 − 30 − 0.2 1.18 0.022

out reaching excessive values of viscosity in the lower range
of shear rates. Both shear-thinning viscosities can be fitted
with the Carreau-Bird model:

η = η∞ +(η0−η∞)[1+(λcγ̇)2]
n−1

2 (3)

where η0 is the zero-shear viscosity, η∞ is the infinite-shear
viscosity, λc is the Carreau time constant and n is the flux
index. The model fits the experimental data within an error
of 2.5%. As we can observe from Fig. 2, as the shear rate
increases, the shear viscosity of the solutions reduces by about
an order of magnitude for fluid ST1, and almost three orders
of magnitude for fluid ST2, with flux index n of 0.61 and 0.26
and time constant λc of 11.9 s and 89.5 s, respectively. The
zero-shear viscosities η0 are found to be equal to 2.3 and 47.6
Pa s, whilst the infinite-shear viscosities η∞ are close to the
solvents viscosities with values of 0.156 and 0.049 Pa s for
fluids ST1 and ST2, respectively.

Steady-shear measurements were repeated in a limited
range of shear rates (γ̇ = 0.1−100 1/s) to obtain the first nor-
mal stress difference of the three solutions. The range of shear
rates applicable was limited on the lower limit by the sensitiv-
ity of the instrument (which for the normal force is typically
around 10−2 N) and on the upper limit by the onset of elastic
instabilities30. Therefore, to overcome these limits, the tests
were performed in a range of temperatures from 0 to 60 C
and the time-temperature superposition principle26 was used
to obtain master curves spanning a wider range of shear rates.
Fig. 3(a) reports the master curves at 21 C obtained for the
first normal stress difference N1, the first normal stress coef-
ficient Ψ1, and the shear stress σ as functions of the reduced
shear rate (aT γ̇), where aT is the temperature shift factor along
the horizontal axis, used to collapse all the results obtained at
different temperatures.

For all solutions the first normal stress difference is higher
than the shear stress in the range of shear rates investigated,
thus highlighting the significant elastic character of the so-
lutions. For both shear-thinning solutions (second and third
graph from the top in Fig. 3(a)), the slope of N1 is lower
than 2 (approximately equal to 0.64) and Ψ1 presents a sig-
nificant shear-thinning character throughout the range tested.
The PAA solution (fluid B) also presents a slope of N1 lower
than 2 (around 1.3) and shear-thinning behaviour of Ψ1, even
if a small change of slope seems to appear below a shear
rate of 10 1/s. This trend possibly hints at the formation of
a plateau of Ψ1, which is predicted for Boger fluids at the
limit of zero-shear by all constitutive models available in the
literature26,56,57.

The pronounced elastic character of all viscoelastic solu-
tions highlight that the use of the Carreau-Bird model, men-
tioned above, can simply describe the shear-thinning charac-
ter of the viscosity for fluids ST1 and ST2 but cannot properly
describe the rheology of these solutions, which would require
the use of more complex nonlinear models. The behaviour
of N1 indicates a deviation from what is predicted by mod-
els such as the upper-convective Maxwell and Oldroyd-B for
all fluids considered. This means that the relaxation times of
the solutions cannot be retrieved from this data by simple ex-
trapolation but models that predict more complex behaviour
of the first normal stress difference would be required. Given
the limited range of data available to properly fit a nonlinear
constitutive model able to predict also the shear-thinning be-
haviour, small oscillatory amplitude sweep (SOAS) tests were
performed at multiple temperatures to obtain the viscoelastic
response in the limit of linear deformations. Master curves at
21 C of the storage G′ and loss G′′ moduli are presented for the
three solutions in Fig. 3(b). Note that, since the concentration
of PAA in fluid B is below the overlapping concentration c∗

(see SI-3 for details), the solution can be regarded as diluted
and the values of the loss modulus are presented by subtract-
ing the solvent contribution to the original values of G′′ de-
tected by the instrument (i.e., G

′′
r ≡ G′′−ηsω). The same ap-

plies to fluid ST1, even though in this case the XG concentra-
tion is slightly above c∗, hence these solutions should be con-
sidered as semi-diluted26,58. In all three cases, the trends of
G′ and G′′ clearly deviate from a single-mode Maxwell fluid,
and the solutions are characterised by a spectrum of relaxation
times, which can be obtained by fitting the experimental data
with a constitutive model. Since in the limit of infinitesimal
deformations all constitutive equations implemented to model
the polymer contribution to the fluid stress simplify to the
simple Maxwell model26,56, the experimental data obtained
for the three fluids were fitted with the generalised multimode
Maxwell equation, which yields the following relations for G′

and G′′:

G′ = ∑
N
k=1

ηkλkω2

1+(λkω)2 , G′′ = ∑
N
k=1

ηkλkω

1+(λkω)2 (4)

where ηk and λk are the viscous constant and the relaxation
time of the k-th mode, respectively, ω is the frequency of the
sinusoidal oscillation and N is the number of modes imple-
mented to fit the data. Results of the fitting are shown by the
continuous lines in Fig. 3(b) and fitting parameters are sum-
marised in Table II. Finally, the characteristic relaxation times
of the three solutions were obtained as weighted averages of
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FIG. 2. Steady-shear viscosity of the viscoelastic solution obtained
at 21 C.

each single mode39:

λ =
∑

N
k=1 λkηk

∑
N
k=1 ηk

(5)

yielding values of 5.5 s, 15 s and 38 s for fluids B, ST1 and
ST2, respectively.

E. Relevant dimensionless numbers

To obtain a proper comparison between the investigations
performed with different solutions, the relevant dimensionless
numbers should be specified. Since all experiment were con-
ducted at various flow rates and with different fluid properties,
the first dimensionless number to consider is the Reynolds
number Re, which indicates the contribution of the inertial to
the viscous forces in the flow and for both geometries can be
defined as a modified version of the typical relation used for
pipes54:

Re≡
ρ

U
ε

D
ηa

(6)

where, ρ is the fluid density, U is the average fluid veloc-
ity evaluated considering an empty pipe of diameter D, ε is
the porosity of the mixing elements and ηa is the fluid viscos-
ity for fluids N and B, whilst for the two shear-thinning fluids
it can be more generally defined as the fluid viscosity at the
apparent shear rate in the mixer γ̇a (where γ̇a is evaluated as
8U/εD59). The relevance of the elastic contribution is quanti-
fied through two different dimensionless numbers, the Debo-
rah number De and the Weissenberg number Wi. The Deborah
number, defined as the ratio between the relaxation time and
a characteristic time scale of the deformation in the flow26,60,
indicates whether or not the polymer chains are completely
relaxed in the flow, hence inducing a fluid-like or a solid-like

response of the fluid to the kinematics imposed by the base
flow. In our case, we consider as the characteristic flow time
t f the residence time in the single mixing element, which is
related to the frequency with which the flow is periodically
re-oriented during the mixing process. De can be defined as
follows:

De≡ λ

t f
=

λU
Lε

(7)

The Weissenberg number is defined as the ratio between the
fluid relaxation time and the reciprocal of the shear rate scale
and can be interpreted as the ratio of the elastic to viscous
forces60. Hence, we can take:

Wi≡ λ γ̇a =
8λU
Dε

(8)

In our case, the two numbers differ only by a geometric
parameter, the mixing element aspect ratio (i.e., AR = L/D).
In conditions where the Reynolds number is not negligible Wi
and Re can be coupled in a fourth dimensionless number, the
Elastic number El, defined as the ratio between the elastic and
the inertial forces:

El ≡ Wi
Re

=
8ληa

ρD2 (9)

Finally, in the presence of complex flow kinematics, char-
acterised by large streamline curvatures and local extensional
components, polymer chains can be highly stretched, causing
a local increase of the normal stresses along the streamline
direction, which triggers the onset of elastic waves. If the
characteristic velocity of the elastic waves is lower than that
of the base flow, instabilities can propagate in the flow61,62.
Hence, a viscoelastic Mach number Ma, defined as the ratio
between the average speed of the flow and the elastic wave
speed, should also be introduced to properly analyse the mix-
ing patterns at different operating conditions:

Ma≡ (U/ε)/(ηa/λρ)1/2 (10)

where (ηa/λρ)1/2 is the shear wave speed in a viscoelastic
fluid63.

III. RESULTS AND DISCUSSION

A. Newtonian benchmark

To provide a reference for the analysis with the polymeric
solutions, we first present the typical mixing patterns obtained
with both geometries in the case of a Newtonian fluid. To
distinguish between purely inertial and elastic effects, we ob-
tained concentration maps with the reference Newtonian flu-
ids at various Reynolds numbers, covering the range of Re
investigated with the viscoelastic fluids. This analysis is par-
ticularly important at the highest Reynolds number tested (i.e.
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FIG. 3. (a) Master curves (at 21 C) of the shear stress, first normal stress difference and first normal stress coefficient against the reduced shear
rate obtained from steady-shear tests and (b) master curves (at 21 C) of the loss (open symbols) and storage (closed symbols) moduli against
the reduced oscillatory frequency obtained from SAOS tests for the three viscoelastic solutions. From top to bottom: Fluid B, Fluid ST1 and
Fluid ST2. Note that the values of the loss modulus reported for fluid B and fluid ST1 correspond to the reduced loss modulus G

′′
r , obtained

subtracting the solvent contribution.

Re = 15), where secondary flows induced by purely iner-
tial effects might start. For the standard helical geometry,
the onset of secondary flows is generally reported to hap-
pen close to Re = 50, even though the precise value can in-
crease or decrease depending on the specific geometric fea-
tures of the mixer (i.e. the ratio L/D, twisting angle and blade
thickness)14,52,64,65. On the other hand, for the standard Sulzer
SMX, which is the closest geometry to the SMB-R mixer em-
ployed in this study, the onset of secondary flows is generally
expected at higher Reynolds numbers (i.e. Re > 100), hence
purely laminar regime is expected in all experimental condi-
tions. Nonetheless, the standard concentration maps for this
specific mixer design and their stability in the range of Re of
interest are not available in the literature, necessitating their
characterisation with a purely viscous fluid. In Fig. 4a the
concentration maps after two and six helical mixer elements
are reported for 0.6 < Re < 15. In all cases, the maps are
perfectly stable in time, and no oscillations or vibrations are

observed even at the highest Re. The mixing patterns are typi-
cal of the helical mixer9 and reflect the mixing mechanism in-
duced by this specific geometry: as the fluid moves across the
first element, the initial semicircles of dyed and undyed fluid
are split in half, forming two streams, each composed at 50/50
of dyed and undyed liquid, which stretch separately along the
twisted walls of the mixing element and then recombine at the
end. This procedure is repeated as the fluid passes through the
subsequent mixing elements, the striations are further split,
stretched and recombined, creating a lamellar structure where
elongated striations of dyed fluid are interleaved with ones of
undyed fluid. Progressively the striation thickness decreases
and the contact interfacial area between the two streams in-
creases. In laminar conditions, the total number of striations
for each liquid stream for a mixer with Ne elements is the-
oretically predicted to be 2Ne , in the absence of molecular
diffusion52. This prediction is recovered in the experimental
results obtained after two mixer elements, where four stria-
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Viscoelastic flow instabilities in static mixers 8

TABLE II. Fitting parameters of the multi-mode Maxwell model obtained from the experimental mastercurve of G′ and G′′ and final relaxation
times evaluated using Eq. 5 for the three viscoelastic solutions

1 2 3 4 5 6 λ (s)

Fluid B
ηk (Pa s) 0.025 0.047 0.123 0.388 − −

5.5
λk (s) 0.015 0.103 0.865 7.97 − −

Fluid ST1
ηk (Pa s) 0.032 0.06 0.082 0.23 0.65 3.22

15
λk (s) 1.5e−5 8.4e−4 0.027 0.18 1.35 20

Fluid ST2
ηk (Pa s) 0.095 0.074 0.25 0.81 5.7 22.53

38
λk (s) 2.2e−7 0.02 0.14 0.82 6.13 48.36

tions are clearly distinguishable for each liquid stream (black
and white striations), whilst after six elements the distinction
between perfectly unmixed striations is blurred by the diffu-
sion acting at the interface of the thinnest lamellae.

The effect of the Reynolds number on the mixing patterns is
revealed only by the differences in the shape of the individual
striations in terms of elongation, curvature and connectivity.
As the mean velocity of the flow increases, the helicoidal cur-
vature of the mixer walls induces a stronger radial component
of the velocity field, which modifies the velocity profiles in the
space between the pipe and the mixer walls, thus changing the
stretching field and consequently the shape of the striations.
This is confirmed by the analysis of the local velocity pro-
files obtained from 3D CFD simulations at different Reynolds
numbers (for details on the CFD simulations refer to SI-4).
Despite the differences observed, in the range of Re tested,
the mixing mechanism and the mixing efficiency remain un-
changed. To verify this, we calculated the coefficient of vari-
ance (CoV ) of the images as:

CoV =
σC

C̄
=

√
1
N ∑

N
i=1 (Ci−C̄)

2

1
N ∑

N
i=1 Ci

(11)

where σC is the standard deviation of the mass fraction C in
the whole cross-section, C̄ is the average mass fraction of a
perfectly mixed stream (i.e. 0.5 for all cases studied) and N
is the number of pixels in the image. Results, reported in Ta-
ble III, show that the values for the different Re tested do not
change significantly, as expected when the mixer performs in
the fully laminar regime50.

Similarly to the helical mixer, the concentration maps ob-
tained with the SMB-R design are perfectly stable in time in
the whole range of Re investigated. Examples of the mixing
patterns obtained after 1, 4 and 8 mixing elements are pre-
sented in Fig. 4(b) for two different values of Re. The topol-
ogy of the striations is unaffected by an increase in Re: as
the two streams pass through the sets of bars constituting the
mixing element, the vertical interface between them is modi-
fied to form a complex pattern, consisting of four “flames” of
dyed and undyed fluid (first row in Fig. 4(b)). The process is
repeated at each passage into a mixing element, thus yielding
a complex lamellar structure constituted by thin striations of
dyed and undyed fluid, which progressively occupy the entire

𝑵𝒆 = 𝟐

𝑹
𝒆
=
𝟏

𝑹
𝒆
=
𝟕
.𝟔

𝑹
𝒆
=
𝟏
𝟓

𝑵𝒆 = 𝟔

𝑹
𝒆
=
𝟐

𝑹
𝒆
=
𝟐
𝟎

𝑵𝒆 = 𝟏 𝑵𝒆 = 𝟒 𝑵𝒆 = 𝟖

(a) (b)

FIG. 4. Concentration maps obtained in the case of a Newtonian fluid
(a) after 2 and 6 helical mixing elements at three different values of
Re, and (b) after 1, 4 and 8 SMB-R mixing elements at Re=2 and 20.
The images presented were obtained from normalisation of the PLIF
raw data.

cross-section of the pipe, as can be observed when compar-
ing the maps obtained after 4 and 8 mixing elements. Up to
the highest Re tested (i.e. Re = 20) the concentration maps
maintain identical features, showing a great robustness in the
mixing efficiency of this geometry in laminar conditions. The
same qualitative behaviour is captured through 3D CFD sim-
ulations (SI-4.3), thus confirming the results obtained through
the PLIF experiments. Values of the CoV are also reported in
Table III for three different Re values.

B. Mixing patterns with viscoelastic solutions

When we move to the polymeric solutions, the mixing pat-
terns for both geometries start to deviate from what was ob-
served in the Newtonian cases as soon as De > 1, indepen-
dently of the specific fluid employed. Note that in all condi-
tions tested El > 50, which indicates that all the irregularities
that are described in the subsequent sections are dominated by
elastic effects. Given the completely different flow fields in-
duced by the two mixers, results will be shown separately for
the two geometries.
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Viscoelastic flow instabilities in static mixers 9

TABLE III. Experimental coefficient of variance CoV (Eq. 11) obtained at all conditions investigated with the Newtonian fluid for both mixers.

CoV (−) Re = 0.6 Re = 2 Re = 7.6 Re = 15 Re = 20

Helical Mixer
Ne = 2 0.919 0.907 0.845 0.867 −

Ne = 6 0.414 0.365 0.365 0.381 −

SMB-R Mixer

Ne = 1 − 0.884 0.891 − 0.856

Ne = 4 − 0.637 0.627 − 0.618

Ne = 8 − 0.539 0.486 − 0.456

1. Helical mixer geometry

Concentration maps after two mixing elements at differ-
ent De are shown in Fig. 5 for the three fluids. Two differ-
ent qualitative behaviours can be distinguished for all fluids
above and below De ≈ 10. For De < 10, the splitting mech-
anism works and four striations per liquid stream can be dis-
tinguished, yet showing anomalous shapes and connectivity
between them. Although altered compared to the elongated
structures observed in the Newtonian case, dyed and undyed
striations maintain symmetry between the two halves of the
cross-section. As De is further increased, the number of stri-
ations reduces and for De > 10 the initial streams are simply
split in two striations with irregular shapes, completely los-
ing any symmetry. These observations suggest that the split-
ting/stretching mechanism, on which the proper functioning
of this mixer is based, is extremely sensitive to the elastic
character of the fluid. For this geometry, at each passage in
a mixing element, the base flow presents two critical points
with significant change of the shear rate along the fluid path-
lines and with curved streamlines: (i) the area of transition
between two mixing elements, where a reorientation of the
flow is induced by the alternating orientation of the elements,
thus regulating the splitting of the streams, and (ii) the he-
licoidal curvature of the walls of the mixer, which induces
the stretching of the striations. When the polymeric solutions
are forced through the mixer, extra tensional stresses can de-
velop in these regions, thus altering the stress distribution and
consequently the shape of the velocity profiles, which in turn
causes a change of the stretching field. Therefore, if the flow
is slow enough to allow for the polymer chains to completely
relax (De < 1), the solutions behave as purely viscous liq-
uids and the Newtonian concentration maps are preserved. On
the other hand, if the characteristic time of the flow becomes
smaller than the characteristic relaxation time λ , the polymer
chains do not have time to fully recover their relaxed. This
translates in a higher resistance to the stretching imposed by
the base flow, causing the change in the shapes of the stria-
tions. As the flow rate is increased, the solid-like response
of the fluid is enhanced and so is the resistance to splitting
and stretching; the streams approach the behaviour of elas-
tic “blobs”, which are split at the edge of the first element,
but flow through the subsequent one without stretching sig-
nificantly (as can be observed by the more rounded shapes in
Fig. 5 for De = 44 and De = 83.8).

The impact of the use of solutions with different rheological
properties can be firstly observed in the diversity of the stria-
tions shapes, as highlighted by direct comparison of the maps
obtained at De∼ 3 (first column in Fig. 5). At these intermedi-
ate values of De, the maps for each fluid are reproducible and
steady, but the elongation of the striations varies with the fluid
adopted. This difference suggests that fluids respond differ-
ently to the stretching imposed by the twisted walls, which im-
plies that the specific shape assumed by the striations depends
on the fluid extensional properties. Despite the lack of direct
extensional measurements for the three fluids tested, general
qualitative properties can be discussed based on data reported
in the literature for similar solutions47,58. The major differ-
ence between the extensional properties of Polyacrylamide
and Xanthan Gum solutions is related to the molecular struc-
tures of the two polymers. Polyacrylamide is a linear flexible
polymer, as such, when in solution, PAA molecules assume
a coiled configuration, whose response to extensional strains
strongly depends on the rate at which the strain is applied,
commonly showing a strain thickening behaviour. This means
that the faster the deformation, the stronger the resistance of
the polymer to extension (i.e. the extensional viscosity of PAA
solutions increases with the extensional rate applied). On the
other hand, Xanthan gum is typically described as a semi-rigid
polymer66,67. Rigid and semi-rigid polymers align almost in-
stantaneously with the flow field, thus presenting extensional
properties that do not depend on the rate of deformation ap-
plied. For this reason, the extensional viscosity of XG solu-
tions is usually reported to be constant with the extensional
rate for a wide range of polymer concentrations47,58. Hence,
as the mean velocity of the flow is increased, the PAA solution
(i.e. Fluid B) shows an increased resistance to stretching com-
pared to the XG solutions, and forms less elongated striations.
In addition, because of the strain thickening character, Fluid
B is also more sensitive to local variations of the strain and
the stress fields, thus facilitating the onset of time-dependent
instabilities in the base flow, which are instead delayed or
suppressed in the case of solutions with uniform extensional
properties47,68.

Fluctuations of the concentration maps are indeed observed
in the case of Fluid B for De > 3. Concerning the other two so-
lutions, the onset of oscillations is delayed to higher De values
(De > 12) in the case of Fluid ST1, and does not occur at all
in the whole range of flow rates tested (up to De ∼ 100) in the
case of Fluid ST2. In this time-dependent regime, different
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FIG. 5. Concentration maps after two helical mixing elements ob-
tained at increasing values of De for the three viscoelastic solutions.
From top to bottom: fluid B, fluid ST1 and fluid ST2.

striations preserve their main shape, yet showing fluctuation
of their boundaries (original videos are available in the sup-
plementary movie SM-1). To quantify the time-dependence
of these oscillations, the mass fraction of dye was tracked in
time for all the unsteady cases in random fixed positions at
the test section cross sectional area, taken close to the stria-
tion boundaries. Examples of the time variations of the mass
fraction obtained at increasing De for Fluid B are shown in
Fig. 6a together with the reference signal for stable maps.
Note that, since the total duration of the steady-state acqui-
sition time tacq changes with the operating flow rate (usually
tacq is at least three times higher than the mean residence time
of the fluid from the entry at the first mixing element to the
measuring plane position), the data are presented against a
normalised time (i.e. t/tacq). In all cases, the acquisition fre-
quency of the camera (i.e. 100 fps) was much higher than the
highest frequency associated with the time variations of the
concentration. The oscillations present strong irregularities
and are non-periodic, as highlighted by the lack of distinctive
peaks in the corresponding power spectral densities (PSD) re-
ported in Fig. 6b. Nonetheless, for all conditions, the spec-
tra present a power low decay of a few orders of magnitude,
which is independent of the operating conditions. Such decay
has been reported for both velocity and pressure drop fluctu-
ations observed at the onset of elastic instabilities in different
geometries37,48,69,70 and indicates that the flow field is char-
acterised by a broad spectrum of timescales, which is usually
associated with the concept of elastic turbulence44. For two
helical elements, the average slope of the power law decay
was found to be approximately 1.8, independently of the op-
erating flow rate and the specific fluid used. On the other hand,
the amplitude of the oscillations, measured as the standard de-
viation of the mass fraction fluctuations (ST DC), slightly in-
creases with De for both fluids, even if lower values are always
observed for fluid ST1 compared to the Boger fluid.

These results suggest that the time-dependent behaviour of
the concentration maps is strictly related to the flow distur-

bance originating in the mixing area, as an effect of the inter-
play of the elastic behaviour of the solutions and the complex
kinematics induced by the mixer geometry, and then propa-
gates downstream of the mixing section. The strength of the
perturbations depends on the elastic properties of the fluid,
but its features are mainly controlled by the kinematics of the
flow. In this event, the Mach number, as defined in Section
3.1, is a better dimensionless quantity than De to individu-
ate the onset of the time-dependent behaviour37,61,62, which
should be expected only when the characteristic velocity of
the base flow is higher than the velocity of propagation of the
elastic wave (i.e. for Ma > 1). For fluid B, the fluctuations
start as soon as Ma becomes higher than 1, whilst for fluid
ST1 the transition is delayed to Ma > 5.

As the number of elements is increased, the different tran-
sitions described above for two mixing elements still apply.
For 1<De< 10 the splitting/stretching mechanism works with
some modifications in the shapes of the final striations, whilst
at higher De the initial undisturbed streams are only split at
the first element, and then randomly reoriented as they flow
downstream. Examples of maps obtained at increasing num-
ber of mixing elements for the three different ranges of De
are reported in Fig.7. Hence, for this specific geometry, an in-
crease of the mean flow rate, which entails an increase of the
characteristic De, is detrimental for mixing purposes, inde-
pendently of the number of mixing elements used. The onset
of the time-dependent behaviour also remains the same. The
oscillations still present a strong chaotic character, which does
not change significantly with the number of mixing elements:
the PSD profiles do not present any significant peaks and de-
cay following a power law with slope close to 2, whilst the
amplitude of the oscillations slightly increases when moving
from two to four mixing elements but remains the same as the
number of elements is further increased, revealing also less
sensitivity to an increment of De.

A summary of the power law indexes of the PSD signals
and amplitude of oscillations for all time-dependent condi-
tions, obtained through a statistical analysis of the fluctuations
in 50 random positions of the maps, is presented in Fig. 6c-d.
Note that, even if locally the strength of the oscillations is sig-
nificant, variations of the mass fraction obtained as a mean
over the whole cross-section are almost negligible (Fig. 6e).
This suggests that the scale of the perturbations remains small
compared to the whole pipe cross-section. The disturbances
maintain their localised character without amplifying their ef-
fects at the macroscopic level. Hence, even if the local oscil-
lations present the characteristics associated with elastic tur-
bulence, the effects at the large scale are negligible and the
mixing does not benefit from an increase in the elastic char-
acter of the solutions as it is usually observed in microscale
applications at the onset of elastic turbulence71,72.

2. SMB-R geometry

Similarly to the helical geometry, deviations in the main
features of the mixing patterns from the Newtonian case are
observed as soon as De > 1, yet showing a more complex
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FIG. 6. (a) Example of local time variation of the dye mass fraction at increasing De, for fluid B. The black dotted signal represents the
reference taken at De < 1, when the behaviour is assumed to be Newtonian; (b) corresponding power spectral density (PSD) functions; (c)
amplitudes of the local oscillations, evaluated as standard deviation of the signals and (d) slope of the power law decay of the corresponding
PSD functions for all unsteady conditions. For each condition, the points reported were obtained by averaging the values over 50 random
positions taken close to the striations boundaries (the error bars represent the variation in STDc between the 50 points sampled). The black
dashed line in panel (c) is the reference value in stable conditions (the grey band is the variation in ST DC between 50 random positions). The
data points associated to the number of mixing element Ne in both panel (c) and (d) are not vertically alligned for visual purposes; (e) example
of the time variation of the average mass fraction across the whole cross-section for the same conditions reported in panel (a).

time-dependent behaviour compared to the previous case,
which is influenced by the type of fluid and the number of
mixing elements. Findings obtained after only one mixing
element are first discussed. Before the onset of any time-
dependent behaviour, independently of the fluid used, the
maps present stable patterns, which partially resemble the
Newtonian case, however showing a less elongated and sym-
metric topology (see SI-5.1). This behaviour, in analogy with
what was previously observed in the helical geometry, can be
associated with the extra tension developed in the direction
of the streamlines, which acts against the proper stretching of
the fluid streams, thus altering the final shape of the striations.
As for the previous geometry, in the case of the Boger fluid
(fluid B) the unsteady behaviour starts at Ma > 1: the stria-
tions present a more elongated and irregular aspect and vibrate
preserving their original shape. The PSD signal associated
with the local oscillations decays with a power law of slope
2, as was also found in the other geometry (see SI-5.2). As
the flow rate is increased and a Ma higher than 10 is reached
(Ma ≈ 12), the maps assume a more elongated configuration
and the fluctuations become stronger (Fig. 8a). The PDS sig-

nal presents a two-step power law decay, characterised by two
different slopes, one in the lowest range of frequencies, close
to 0.5, and the other at intermediate frequencies, with values
between 2 and 3 (Fig. 8b). A similar trend has been observed
in the PSD signals of the pressure drop fluctuations associ-
ated with the flow of viscoelastic solutions across an array
of obstacles37. The authors linked the two-step decay to the
superposition of two different instabilities, one related to the
wash out of small volume of fluids, formed upstream of the
obstacles, and the other related to the presence of elastic tur-
bulence. In this case, even though direct observations of the
flow are not available in the mixing area, a similar mechanism
might be in place: in the direction of the flow, the bars consti-
tuting the mixing elements can be seen as a complex array of
rectangular obstacles; small recirculating zones can form up-
stream the bars and subsequently destabilise, thus generating
the strong fluctuations observed in this regime.

In the case of fluid ST1, the transitions observed at in-
creasing Ma differ from those depicted above: an intermediate
regime, characterised by small vibration of the concentration
profiles is not observed, but instead strong time-dependent
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FIG. 7. Evolution of the concentration maps with the addition of
mixing element in the helical geometry for the three different regimes
individuated.

fluctuations appear even at the lowest flow rate tested (cor-
responding to Ma = 0.3). The shape of the maps changes sig-
nificantly in time, assuming a quasi-periodic character with
similar patterns that repeat continuously in time. The periodic
character can be captured in some key locations, through the
time variation of the concentration profiles, but it does not
extend to the whole cross-section. Examples of the quasi-
periodic oscillations captured for Ma = 0.3 and Ma = 0.86
are reported in Fig. 9a together with the corresponding PSD
signals (Fig. 9b), which show a small peak indicating the char-
acteristic frequency of the oscillations. As the mean flow rate
is increased, the striations assume more elongated shapes, and
fluctuate vigorously in the whole cross-section, progressively
gaining a stronger chaotic character and losing the local peri-
odic character. As for fluid B, the corresponding PSD signals
present a two-step power law decay, characterised by the same
two different slopes (see SI-5.3), with no distinct peak iden-
tifiable. Similarly to what has been described for fluid B, the
PSD double decay suggests that what is observed downstream
can be related to the superposition of two instabilities: (i) lo-
calised releases of pockets of fluids, or ‘dead zones’, formed
upstream the mixer element, which dominate in the low fre-
quency regime, and (ii) purely elastic instabilities, which de-
cay in a wide range of frequencies. With an increase of the
shear-thinning character, the onset of a time-dependent be-
haviour is delayed to Ma > 7. A further difference from the
previous cases is observed for fluid ST2: at Ma = 7.3 the con-
centration in the cross-section does not oscillate continuously
but instead shows a sudden change in topology, from one sta-
tionary pattern to another. As Ma is increased, strong fluc-
tuations arise, presenting the same chaotic character found in
the other two cases (refer to SM.2 for videos of all cases de-
scribed).

The different behaviours observed might be related to the

changes induced by different rheological properties to the for-
mation and stability of the dead zones upstream of the mixing
elements and can be rationalised by drawing on what has al-
ready been observed experimentally for flows past arrays of
obstacles. In the case of shear-thinning fluids, the formation
of dead zone can be initiated at Ma � 1. This condition is
identified as a ‘dead-zone instability’37. At low flow rates, a
small dead-zone first forms upstream, then grows in the axial
direction opposite to the direction of the flow. As it grows, the
dead zone is destabilised by the continuous flow and starts
to wobble perpendicularly to the flow direction until it de-
taches from the obstacle and gets washed out with the main
flow. The initial mechanism of formation of the dead zones is
comparable to a shear banding phenomenon, where local re-
gions at low shear rate form close to the upstream fixed wall
of the obstacle, locally increasing the viscosity and thus creat-
ing discontinued regions of low (close to upstream wall) and
high mobility. As a consequence, the shear-thinning character
of the solutions strongly influences the formation and stability
of the dead zones, as reported by Kawale and co-workers37,73,
who observed that highly shear thinning solutions form bigger
and more stable dead zones, whilst when the shear thinning is
suppressed the characteristic size of the dead zones also re-
duces drastically.

Hence, the results obtained with the shear thinning fluids
suggest that in the case of the low shear thinning fluid, the
dead zones form and destabilise at very low flow rates, thus
showing quasi-periodic oscillations of the concentration at
Ma < 1, whilst for the highly shear-thinning case, the dead
zones probably still form at low flow rates, but grow in size be-
fore losing their stability at a higher mean flow velocity, thus
showing stable concentration maps up to Ma > 1. Specifically,
the sudden change observed at Ma = 7.3 might be due to the
release of a large dead zone formed from merging of various
smaller ones, which at some point is washed out by the main
flow. As the flow rate is further increased, the stability of
the dead zones reduces, local releases influence the stability
of zones downstream, creating a ripple effect that translates
into a chaotic behaviour of the concentration profiles, charac-
terised by a PSD with a double power law decay.

On the other hand, in the case of the Boger fluid, the char-
acteristics of the first unstable behaviour detected suggest that
the initial instability is not related to formation of dead zones
but rather to disturbances typical of pure elastic instabilities,
which could originate also downstream of the obstacle. For
the simplified case of the flow of Boger fluids past a confined
cylinder61 or a linear array of cylinders62, a spatially and tem-
porally unsteady flow is typically reported downstream of the
obstacle as soon as Ma ∼ 1, this is then followed by the for-
mation of an unsteady upstream vortex at higher Ma. Even
though the geometry of our system is far more complicated,
a similar mechanism could explain the evolution of the un-
steadiness observed for the Boger fluid, where mild vibrations
of the concentration maps are observed for 1 <Ma < 10, fol-
lowed by strong chaotic fluctuations, which could be related
to the presence of unsteady upstream vortexes that cause a
chaotic behaviour comparable to that observed in the shear-
thinning cases, but different in its origin.
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FIG. 8. (a) Time evolution of the concentration maps obtained at Ma = 12 with fluid B after one SMB-R mixing element (images are reported
with a ∆t = 2.5 s); (b) corresponding PSD functions of the oscillations of dye mass fraction obtained in four random positions of the cross-
section. The PSD shows a first power law decay (blue line, slope ∼−0.5) up to f ≈ 1 Hz and a second (red line, slope ∼−2), which extends
in the higher range of frequencies.

The general features of the instabilities are preserved with
the addition of mixing elements, yet showing small changes
in the boundaries between the different behaviours described
above. In the case of fluid ST1, the quasi-periodic character
observed at the lowest flow rates is lost and the oscillations
present a strong chaotic character in the whole range of con-
ditions tested. Similarly, for fluid ST2, the unsteady behaviour
still begins at Ma = 7, but the fluctuations are chaotic. These
observations support the hypothesis of formation/wash out of
dead zones: in the presence of further obstacles in the axial
direction, the release of single pockets of fluid affects greatly
the stability of those downstream, thus generating a ripple ef-
fect as soon as the dead zone get released. The topology of
the maps is completely different than the one observed in the
Newtonian case. The complex lamellar structure is substituted
by more rounded irregular areas, which decrease in size with
the further addition of mixing elements (Fig. 10). Nonethe-
less, as Ma increases, the characteristic dimension of the un-
mixed area gradually increases, becoming less sensitive to the
number of mixing elements used (Fig. 10).

For the Boger fluid the first unstable behaviour, charac-
terised by mild oscillations, is anticipated at Ma = 0.4, whilst
strong chaotic oscillations appear at Ma = 4. As for the pre-
vious cases, the local disturbances generated in the first ele-
ments are progressively enhanced by the presence of further
obstacles, thus shifting the onset of the instabilities to slightly
lower values of Ma. The statistical values of the amplitude
of the oscillations and the power law indexes of the PSD sig-
nals for all unsteady conditions found with the SMB-R ge-
ometry are summarised in Fig. 11. With one mixing element,
since the fluctuations become progressively more chaotic and
evenly distributed in the cross-section, the strength of the os-
cillations increases significantly with the increase of the mean
flow rate, independently of the type of fluid, whilst showing
a very mild increment with 4 and 8 mixing elements, where
the fluctuations are less sensitive to a change in the mean flow
velocity. By comparing the magnitude of the oscillations in
Fig. 11 with those reported in Fig. 6c, the time-dependent be-
haviour in the SMB-R geometry is notably stronger than that
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FIG. 9. (a) Example of quasi-periodic fluctuactions observed in the
case of fluid ST1 at low Ma after one SMB-R mixing element (black
line: Ma = 0.3, blue line: Ma = 0.86); (b) corresponding PSD func-
tions. The red arrows indicate the characteristic frequency of the
oscillations.

in the helical mixer. This is further emphasised by the signifi-
cant time variations found for the average mass fraction in all
cases showing strong chaotic fluctuations (Fig. 12), thus high-
lighting the different nature of the instabilities observed in the
two geometries.
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FIG. 10. Evolution of the concentration patterns across 1, 4 and 8
SMB-R mixing elements at increasing Ma (data obtained with fluid
ST1). The images reported represent a single frame, since strong
fluctuations of the concentration are observed for all the cases de-
picted.
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FIG. 11. (a) Amplitudes of the local oscillations, evaluated as stan-
dard deviation of the signals and (b) slope of the second power law
decay of the corresponding PSD functions for all unsteady condi-
tions in the SMB-R geometry. For each condition the points reported
were obtained by averaging the values over 50 random point in the
image (the errors bar represent the varition of ST DC between the 50
points sampled). The black dashed line in panel (a) is the reference
value in stable conditions (the grey band is the varition of STDc be-
tween more than 50 random positions). The data points associated to
the number of mixing element Ne in both panels (a) and (b) are not
vertically alligned for visual purposes.
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FIG. 12. Example of the time variation of the average dye mass
fraction evaluated in the whole cross-section for three different con-
ditions after 1 SMB-R element.

C. Effects on the mixing efficiency

A summary of the transitions described for both geome-
tries and the resulting outcome in terms of mixing efficiency
are reported in Fig. 13 and Fig. 14 for the Helical and the
SMB-R mixers, respectively. In the case of the helical geom-
etry, the same performances of the Newtonian case are ob-
served only for De < 1. A first deviation occurs at De > 1 and
low Ma, where the mixing patterns present an altered topol-
ogy, characterised by less elongated striations. In this regime,
the concentration maps are steady but the splitting/stretching
mechanism is altered because of the more pronounced solid-
like behaviour of the viscoelastic solutions, thus displaying a
loss of mixing efficiency compared with the Newtonian case
(expressed in terms of CoV ), which becomes evident as the
number of mixing elements is increased. As De rises, the
elastic character of the solutions is enhanced and the two ini-
tial streams remain completely unmixed. Nonetheless, as the
mean flow velocity is increased, a time-dependent behaviour
arises at Ma > 1. In this regime, the large unmixed areas start
to fluctuate chaotically, still preserving their original shape.
As can be seen from the Ma-El phase map in Fig. 13, the onset
of the unsteady regime is influenced by the rheological proper-
ties of the fluid: as the shear-thinning character increases, the
onset of the unsteady regime is pushed to higher Ma numbers
and is completely suppressed for the highly shear-thinning
fluid in the range of conditions tested. The cause of this sta-
bilising effect could be attributed to two different aspects, one
related to the more stable extensional properties of the semi-
rigid Xanthan gum molecules, which infer a lower sensibility
to the sudden reorientation of the flow forced by the geometry
of the mixer47,68, and the other related to the possible sup-
pression of the time-dependent instability at higher values of
the Elastic number, which is typically observed in the case
of elasto-inertial instabilities in different flows37,47,68. Fur-
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FIG. 13. On the left, Ma-El space phase map summarising the transitions observed in the Helical mixer (for all lengths studied); on the right,
evolution of the mixing efficiency for all conditions tested. The coloured horizontal bands are reported for reference and represent the CoV
values in the Newtonian case (the thickness of the band is the standard deviation over all the values obtained at different Re). The error bars
represent the standard deviation of the CoV signals in the case of unsteady conditions.

ther experimental investigations of the flow field in the mix-
ing area, performed with a wider range of fluid rheological
properties, are required to clarify the nature of the instability;
however, from a technological viewpoint, the effect of the on-
set of a time-dependent behaviour on the mixing efficiency of
the helical mixer is negligible as the oscillations are localised
at the boundaries of the striations and do not have the strength
to amplify to the whole cross-section of the pipe. The mix-
ing efficiency in this geometry is strictly dominated by the
efficiency of the stretching/splitting mechanism, which is pre-
vented by an increase of the elastic character of the solutions,
thus showing a detrimental effect on the mixing efficiency as
soon as De > 1.

In terms of flow resistance, the onset of the instabilities does
not strongly influence the magnitude of the friction factor and
only a small increase can be observed at the highest Re tested
(see Fig. 15a), although the power spectral densities of the
pressure drop signals present a power law decay with a slope
close to 2. The trend remains the same in the whole range of
Ma for which instabilities are observed, yet showing a pro-
gressive increase in the magnitude of the PSD and widening
of the range of frequencies over which the decay extends.

For the SMB-R mixer, the transitions to different regimes

are more complex and clearly influenced by the number of
mixing elements and the rheology of the fluid. In the absence
of shear-thinning (i.e. fluid B), the transitions observed are
similar to the helical geometry: for De > 1 and Ma < 1, the
shape of the concentration pattern is altered but the maps ap-
pear steady; as Ma exceeds unity, mild oscillations of the stri-
ations are observed; however, for this geometry, when Ma is
further increased a different regime appears, characterised by
more elongated striations that strongly oscillate in time. When
the number of elements is increased, the qualitative behaviour
persists but the boundaries between the unsteady transitions
move to lower Ma. In the presence of a shear-thinning char-
acter, the phenomenology observed changes. For the mildly
shear-thinning fluid (fluid ST1), strong oscillations are ob-
served also at Ma < 1: the oscillations appear quasi-periodic
at the lowest flow rates but become progressively more chaotic
as the mean flow velocity is increased. The same behaviour
is observed for fluid ST2, with the only exception that the un-
steady behaviour is delayed at higher values of Ma. The addi-
tion of mixing elements appears to simply enhance the chaotic
character of the fluctuations.

The variety of the observations can be discussed assuming
an analogy with the flow of viscoelastic solutions past arrays
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FIG. 14. On the left, Ma-El space phase map summarising the transitions observed in the SMB-R mixer (for all length studied). For fluid
B the unstable behaviour is anticipated at Ma < 1 and the strong fluctuations appear at Ma < 10 when the number of mixing elements is
increased (grey squares on the map); on the right, evolution of the mixing efficiency for all conditions tested. The coloured horizontal bands
are reported for reference and represent the CoV values in the Newtonian case (the thickness of the band is the standard deviation over all the
values obtained at different Re). The error bars represent the standard deviation of the CoV signals in the case of unsteady conditions.

of obstacles: in the case of the Boger fluid, the transitions ob-
served suggest the presence of a first flow instability generated
downstream of the mixing elements at lower Ma, followed
by the formation of upstream vortexes62,74, which, given the
complexity of the geometry, can interact and destabilise, gen-
erating strong fluctuations of the concentration. On the other
hand, for the shear-thinning solutions, a dead zone can form
upstream of the mixing element bars even at low Ma, which
further grow in size up to the point where they lose their sta-
bility and get released37,73.

As opposed to the helical mixer, in the SMB-R mixer the
effect of the onset of the instabilities on the mixing efficiency
is not in all cases detrimental: the presence of strong fluctu-
ations improves the mixing efficiency after only one mixing
element, as can be seen in the bar charts in Fig. 14; how-
ever, as the number of elements is increased, the CoV does
not always recover the same efficiency as the Newtonian case.
Specifically, the formation of large dead zones, creates large
unmixed areas, generating a negative impact on the mixing
efficiency, as can be seen in the case of fluid ST2, where the
CoV does not vary with the number of mixing elements. Addi-
tionally, even when the same efficiency of the Newtonian case

is recovered, large temporal variations are still present, thus
yielding uneven mixing performance. As regards the energy
requirements, similarly to the helical mixer, the onset of the
instability does not entail a significant increase in the mag-
nitude of the flow resistance (Fig. 15b). The PSD functions
of the pressure drop signal present the same qualitative be-
haviour observed in the other geometry, although showing a
greater magnitude (i.e. at similar Ma, the magnitude of the
PSD values is almost four orders of magnitude higher for the
SMB-R mixer than for the helical mixer), a finding that high-
lights the more pronounced strength of the chaotic fluctuations
in the SMB-R mixer.

IV. CONCLUSIONS

This work experimentally investigates the onset of vis-
coelastic instabilities in two continuous flow tubular static
mixers and the subsequent effect on the topology of the mix-
ing patterns. To address the influence of distinct geometric
features on the onset and nature of the instabilities, two mixer
geometries were selected, namely the Kenics helical mixer
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FIG. 15. (a) Friction factor vs. Re for all fluid tested (left) and sample PSD functions at increasing Ma for fluid B (the qualitative behaviour is
the same for all fluid tested) (right) for the helical geometry; (b) Friction factor vs. Re for all fluid tested (left) and sample PSD functions at
increasing Ma for fluid B (the qualitative behaviour is the same for all fluid tested) (right) for the SMB-R geometry.

and the SMB-R mixer. We captured instantaneous concen-
tration profiles via Planar Laser Induced Fluorescence mea-
surements at different flow rates, whilst pressure drop mea-
surements allowed us to continuously monitor the flow resis-
tance. Three different polymeric solutions were employed to
investigate the effect of the interplay between the fluid rheo-
logical properties and the complex kinematics induced by the
mixing elements on the mixing patterns. Specifically, a di-
luted solution of PAA in glycerol was used as Boger fluid to
test the effects of pure elasticity, whilst two Xanthan gum so-
lutions were used to investigate the combination of elasticity
and shear-thinning behaviour.

Clear deviations from the Newtonian benchmark appeared
as soon as the Deborah number exceeded unity, even though,
in both geometries different transitions were observed as the
mean flow rate was increased. In the case of the helical mixer,
two qualitative behaviours can be distinguished for all flu-
ids: (i) one at intermediate De, where the initial streams are

split in thinner striations, as many as in the Newtonian case,
yet showing anomalous shapes; (ii) the other at higher De,
where the streams are simply split in two striations with ir-
regular shapes, independently of the number of mixing ele-
ments employed. In this high De regime, a time-dependent
behaviour, characterised by local fluctuations of the concen-
tration patterns, can also be observed. The striations preserve
their original shapes, yet showing irregular vibration of their
boundaries. These local oscillations have a significant chaotic
character, identifiable from a characteristic power law decay
of the corresponding PSD signals, which was not affected by
the operating conditions. The onset of the time-dependent be-
haviour, which can be identified using the viscoelastic Mach
number, varies with the fluid properties: for the purely elas-
tic fluid, oscillations can be observed at Ma ≈ 1, whilst they
are delayed to Ma≈ 5 in the case of the mildly shear-thinning
fluid and completely suppressed for the highly shear-thinning
fluid. These results suggest that, if the solid-like behaviour of
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the fluid is significant (i.e. De > 1), local flow disturbances
can originate in the mixing area, as a result of the interplay
between the elastic stresses and local extensional components
of the flow induced by the mixing elements, which then prop-
agate downstream. Nonetheless, the scale of the perturbation
remains small compared to the whole pipe cross-section and,
even if the local oscillations present the characteristics asso-
ciated to elastic turbulence, the effects at the large scale are
negligible. Hence, in the case of the helical geometry, the
onset of unsteady instabilities does not influence the mixing
efficiency of the process, which is, instead, controlled by the
efficiency of the splitting/stretching mechanism of the liquid
streams, similarly to the Newtonian case.

For the SMB-R mixer, the transitions to different regimes
are more complex. In the case of the Boger fluid, the tran-
sitions observed are similar to the helical geometry, with the
addition of a different regime appearing at Ma > 10, charac-
terised by more elongated striations that strongly oscillate in
time. The qualitative behaviour is maintained with an increase
in the number of mixing elements, even though the unsteady
transitions appear at lower Ma. This suggests the occurrence
of a first flow instability, generated downstream of the mixing
element at lower Ma, followed by the formation of upstream
vortexes, which can interact and destabilise, generating strong
fluctuations of the concentration. On the other hand, for the
shear-thinning solutions, strong oscillations, which become
progressively more chaotic with an increase of the mean flow
rate, are observed also at Ma < 1, thus suggesting the onset
of dead zones instabilities37. The addition of mixing elements
appears to simply enhance the chaotic character of the fluc-
tuations. Differently from the helical geometry, the onset of
the instabilities does not have the same detrimental effect on
the mixing efficiency, although formation of large dead zones
in the mixing area can critically impact the process, creating
large pools of unmixed liquids. In addition, in all conditions
presenting strong temporal variations, the performances of the
mixer are severely uneven in time.

In both geometries, the enhanced solid-like behaviour that
the viscoelastic solutions assume with an increase in the mean
flow rate strongly affects the stretching of the fluid elements
and therefore the final shape of the mixing pattern. This effect
greatly disturbs the robustness and reproducibility of the con-
centration profiles that are typical of static mixers in laminar
conditions and resulted in a deterioration of the mixing qual-
ity for the systems investigated here. The results highlight
the necessity to further investigate the impact of both elastic-
ity and extensional properties of the fluid on the operation of
continuous flow mixing technologies.

SUPPLEMENTARY INFORMATION

Supplementary information are available in a separate file
containing: (i) design details of the two mixers employed;
(ii)calibration curve for PLIF experiments; (iii) estimate of
the overlapping concentration of the polymer solutions; (iv)
CFD simulation for the Newtonian case; (v) additional maps
for SMB-R geometry.
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