8,145 research outputs found
Experimentally feasible quantum erasure-correcting code for continuous variables
We devise a scheme that protects quantum coherent states of light from
probabilistic losses, thus achieving the first continuous-variable quantum
erasure-correcting code. If the occurrence of erasures can be probed, then the
decoder enables, in principle, a perfect recovery of the original light states.
Otherwise, if supplemented with postselection based on homodyne detection, this
code can be turned into an efficient erasure-filtration scheme. The
experimental feasibility of the proposed protocol is carefully addressed
Phase fluctuations in atomic Bose gases
We improve on the Popov theory for partially Bose-Einstein condensed atomic
gases by treating the phase fluctuations exactly. As a result, the theory
becomes valid in arbitrary dimensions and is able to describe the
low-temperature crossover between three, two and one-dimensional Bose gases,
which is currently being explored experimentally. We consider both homogeneous
and trapped Bose gases.Comment: 4 pages. Title changed Major changes involve extension of theory to
include trapped Bose gases. Deletion of reference to and comparison with
hydrogen experiment. Due to these changes, second author added. Modified
manuscript accepted for PR
Eta electroproduction on nuclei in the nucleon resonance region
We investigate eta electroproduction on nuclei for Q^2=2.4 and 3.6 GeV^2 in
the framework of a coupled-channel BUU transport model. We analyze the
importance of final state interactions and side feeding and compare with
findings drawn from eta photoproduction. It is shown that in contrast to
photoproduction the influence of etas stemming from secondary processes becomes
important at high Q^2.Comment: 5 pages, 5 figure
Experimental Proof of Quantum Nonlocality without Squeezing
It is shown that the ensemble where is a Gaussian distribution of finite variance and is a
coherent state can be better discriminated with an entangled measurement than
with any local strategy supplemented by classical communication. Although this
ensemble consists of products of quasi-classical states, it exhibits some
quantum nonlocality. This remarkable effect is demonstrated experimentally by
implementing the optimal local strategy together with a joint nonlocal strategy
that yields a higher fidelity.Comment: 4 pages, 2 figure
Experimental investigation of the Landau-Pomeranchuk-Migdal effect in low-Z targets
In the CERN NA63 collaboration we have addressed the question of the
potential inadequacy of the commonly used Migdal formulation of the
Landau-Pomeranchuk-Migdal (LPM) effect by measuring the photon emission by 20
and 178 GeV electrons in the range 100 MeV - 4 GeV, in targets of
LowDensityPolyEthylene (LDPE), C, Al, Ti, Fe, Cu, Mo and, as a reference
target, Ta. For each target and energy, a comparison between simulated values
based on the LPM suppression of incoherent bremsstrahlung is shown, taking
multi-photon effects into account. For these targets and energies, we find that
Migdal's theoretical formulation is adequate to a precision of better than
about 5%, irrespective of the target substance.Comment: 8 pages, 13 figure
Investigating 16O with the 15N(p,{\alpha})12C reaction
The 16O nucleus was investigated through the 15N(p,{\alpha})12C reaction at
excitation energies from Ex = 12 231 to 15 700 keV using proton beams from a 5
MeV Van de Graaff accelerator at beam energies of Ep = 331 to 3800 keV. Alpha
decay from resonant states in 16O was strongly observed for ten known excited
states in this region. The candidate 4-alpha cluster state at Ex = 15.1 MeV was
investigated particularly intensely in order to understand its particle decay
channels.Comment: Submitted for Proceedings of Fourth International Workshop on State
of the Art in Nuclear Cluster Physics (SOTANCP4), held from May 13 - 18, 2018
in Galveston, TX, US
Observation of twin beam correlations and quadrature entanglement by frequency doubling in a two-port resonator
We demonstrate production of quantum correlated and entangled beams by second
harmonic generation in a nonlinear resonator with two output ports. The output
beams at wavelength 428.5 nm exhibit 0.9 dB of nonclassical intensity
correlations and 0.3 dB of entanglement.Comment: 5 pages, 7 figure
Experimental test of strongly non-classical character of a noisy squeezed single-photon state
We experimentally verify the quantum non-Gaussian character of a
conditionally generated noisy squeezed single-photon state with positive Wigner
function. Employing an optimized witness based on probabilities of squeezed
vacuum and squeezed single-photon states we prove that the state cannot be
expressed as a mixture of Gaussian states. In our experiment, the non-Gaussian
state is generated by conditional subtraction of a single photon from squeezed
vacuum state. The state is probed with a homodyne detector and the witness is
determined by averaging a suitable pattern function over the measured homodyne
data. Our experimental results are in good agreement with a theoretical fit
obtained from a simple yet realistic model of the experimental setup.Comment: 10 pages, 8 figures, REVTeX
Naturally-phasematched second harmonic generation in a whispering gallery mode resonator
We demonstrate for the first time natural phase matching for optical
frequency doubling in a high-Q whispering gallery mode resonator made of
Lithium Niobate. A conversion efficiency of 9% is achieved at 30 micro Watt
in-coupled continuous wave pump power. The observed saturation pump power of
3.2 mW is almost two orders of magnitude lower than the state-of-the-art. This
suggests an application of our frequency doubler as a source of non-classical
light requiring only a low-power pump, which easily can be quantum noise
limited. Our theoretical analysis of the three-wave mixing in a whispering
gallery mode resonator provides the relative conversion efficiencies for
frequency doubling in various modes
- âŠ