8,145 research outputs found

    Experimentally feasible quantum erasure-correcting code for continuous variables

    Get PDF
    We devise a scheme that protects quantum coherent states of light from probabilistic losses, thus achieving the first continuous-variable quantum erasure-correcting code. If the occurrence of erasures can be probed, then the decoder enables, in principle, a perfect recovery of the original light states. Otherwise, if supplemented with postselection based on homodyne detection, this code can be turned into an efficient erasure-filtration scheme. The experimental feasibility of the proposed protocol is carefully addressed

    Phase fluctuations in atomic Bose gases

    Full text link
    We improve on the Popov theory for partially Bose-Einstein condensed atomic gases by treating the phase fluctuations exactly. As a result, the theory becomes valid in arbitrary dimensions and is able to describe the low-temperature crossover between three, two and one-dimensional Bose gases, which is currently being explored experimentally. We consider both homogeneous and trapped Bose gases.Comment: 4 pages. Title changed Major changes involve extension of theory to include trapped Bose gases. Deletion of reference to and comparison with hydrogen experiment. Due to these changes, second author added. Modified manuscript accepted for PR

    Eta electroproduction on nuclei in the nucleon resonance region

    Full text link
    We investigate eta electroproduction on nuclei for Q^2=2.4 and 3.6 GeV^2 in the framework of a coupled-channel BUU transport model. We analyze the importance of final state interactions and side feeding and compare with findings drawn from eta photoproduction. It is shown that in contrast to photoproduction the influence of etas stemming from secondary processes becomes important at high Q^2.Comment: 5 pages, 5 figure

    Experimental Proof of Quantum Nonlocality without Squeezing

    Get PDF
    It is shown that the ensemble {p(α),∣α>âˆŁÎ±âˆ—>}\{p (\alpha),|\alpha>|\alpha^*>\} where p(α)p (\alpha) is a Gaussian distribution of finite variance and ∣α>| \alpha> is a coherent state can be better discriminated with an entangled measurement than with any local strategy supplemented by classical communication. Although this ensemble consists of products of quasi-classical states, it exhibits some quantum nonlocality. This remarkable effect is demonstrated experimentally by implementing the optimal local strategy together with a joint nonlocal strategy that yields a higher fidelity.Comment: 4 pages, 2 figure

    Experimental investigation of the Landau-Pomeranchuk-Migdal effect in low-Z targets

    Full text link
    In the CERN NA63 collaboration we have addressed the question of the potential inadequacy of the commonly used Migdal formulation of the Landau-Pomeranchuk-Migdal (LPM) effect by measuring the photon emission by 20 and 178 GeV electrons in the range 100 MeV - 4 GeV, in targets of LowDensityPolyEthylene (LDPE), C, Al, Ti, Fe, Cu, Mo and, as a reference target, Ta. For each target and energy, a comparison between simulated values based on the LPM suppression of incoherent bremsstrahlung is shown, taking multi-photon effects into account. For these targets and energies, we find that Migdal's theoretical formulation is adequate to a precision of better than about 5%, irrespective of the target substance.Comment: 8 pages, 13 figure

    Investigating 16O with the 15N(p,{\alpha})12C reaction

    Full text link
    The 16O nucleus was investigated through the 15N(p,{\alpha})12C reaction at excitation energies from Ex = 12 231 to 15 700 keV using proton beams from a 5 MeV Van de Graaff accelerator at beam energies of Ep = 331 to 3800 keV. Alpha decay from resonant states in 16O was strongly observed for ten known excited states in this region. The candidate 4-alpha cluster state at Ex = 15.1 MeV was investigated particularly intensely in order to understand its particle decay channels.Comment: Submitted for Proceedings of Fourth International Workshop on State of the Art in Nuclear Cluster Physics (SOTANCP4), held from May 13 - 18, 2018 in Galveston, TX, US

    Observation of twin beam correlations and quadrature entanglement by frequency doubling in a two-port resonator

    Get PDF
    We demonstrate production of quantum correlated and entangled beams by second harmonic generation in a nonlinear resonator with two output ports. The output beams at wavelength 428.5 nm exhibit 0.9 dB of nonclassical intensity correlations and 0.3 dB of entanglement.Comment: 5 pages, 7 figure

    Experimental test of strongly non-classical character of a noisy squeezed single-photon state

    Get PDF
    We experimentally verify the quantum non-Gaussian character of a conditionally generated noisy squeezed single-photon state with positive Wigner function. Employing an optimized witness based on probabilities of squeezed vacuum and squeezed single-photon states we prove that the state cannot be expressed as a mixture of Gaussian states. In our experiment, the non-Gaussian state is generated by conditional subtraction of a single photon from squeezed vacuum state. The state is probed with a homodyne detector and the witness is determined by averaging a suitable pattern function over the measured homodyne data. Our experimental results are in good agreement with a theoretical fit obtained from a simple yet realistic model of the experimental setup.Comment: 10 pages, 8 figures, REVTeX

    Naturally-phasematched second harmonic generation in a whispering gallery mode resonator

    Get PDF
    We demonstrate for the first time natural phase matching for optical frequency doubling in a high-Q whispering gallery mode resonator made of Lithium Niobate. A conversion efficiency of 9% is achieved at 30 micro Watt in-coupled continuous wave pump power. The observed saturation pump power of 3.2 mW is almost two orders of magnitude lower than the state-of-the-art. This suggests an application of our frequency doubler as a source of non-classical light requiring only a low-power pump, which easily can be quantum noise limited. Our theoretical analysis of the three-wave mixing in a whispering gallery mode resonator provides the relative conversion efficiencies for frequency doubling in various modes
    • 

    corecore