34 research outputs found

    Effect of SUSD2 knockdown on SMAD2/3 expression.

    No full text
    <p>(A) Representative original FACS plots showing SUSD2 knockdown. (B) Arithmetic means ± SEM (n = 5) of SUSD2+ Ishikawa cells. Data are depicted as fold induction relative to non-targeting siRNA (Control) samples. ****P<0.0001 indicates statistically significant difference from control cells using Student’s t-test. (C) Arithmetic means ± SEM (n = 4) of <i>SUSD2</i> transcript levels normalized to <i>L19</i> transcript levels in Ishikawa cells. Data are depicted as fold induction relative to transcript levels of control samples. *P< 0.05 indicates statistically significant difference from control cells using Student’s t-test. (D) Representative original Western blot of SMAD2/3 and GAPDH in Ishikawa cells. (E) Arithmetic means ± SEM (n = 7) of SMAD2/3 ratio normalized to GAPDH in Ishikawa cells. *P< 0.05 indicates statistically significant difference from control cells using Student’s t-test.</p

    Influence of SUSD2 knockdown on cell senescence.

    No full text
    <p>(A) Representative pictures of Ishikawa cells stained for β-Galactosidase after SUSD2 knockdown. Scale bar 100μm. (B) Arithmetic means ± SEM (n = 3–8) of relative abundance of β-Galactosidase. *P< 0.05 indicates statistically significant difference from control cells using Student’s t-test.</p

    Effect of SUSD2 on cell death.

    No full text
    <p>(A) Representative FACS plots showing cell cycle progression of Ishikawa cells characterized by Propidium Iodide (PI) staining after 72h TGFβ (10 ng/ml) or Non-targeting (NT) or with SUSD2 siRNA treatment as indicated. Sub G0/G1 represents the apoptotic fraction. (B) Arithmetic means ± SEM (n = 5–6) of percentage cells in different cell cycle phases. *P < 0.05, **P < 0.01 indicates statistically significant difference from control cells using Student’s t-test.</p

    Downregulation of endometrial mesenchymal marker SUSD2 causes cell senescence and cell death in endometrial carcinoma cells

    No full text
    <div><p>The cause of death among the majority of endometrial cancer patients involves migration of cancer cells within the peritoneal cavity and subsequent implantation of cancer spheroids into neighbouring organs. It is, thereby, important to identify factors that mediate metastasis. Cell adhesion and migration are modified by the mesenchymal stem cell (MSC) marker Sushi domain containing 2 (SUSD2), a type I transmembrane protein that participates in the orchestration of cell adhesion and migration through interaction with its partner Galactosidase-binding soluble-1 (LGALS1). MSCs have emerged as attractive targets in cancer therapy. Human endometrial adenocarcinoma (Ishikawa) cells were treated with TGFβ (10 ng/ml) for 72h. <i>SUSD2</i>, <i>LGALS1</i> and <i>MKI67</i> transcript levels were quantified using qRT-PCR. The proportion of SUSD2 positive (SUSD2+) cells and SMAD2/3 abundance were quantified by FACS and Western blotting, respectively. Senescent cells were identified with β-galactosidase staining; cell cycle and cell death were quantified using Propidium Iodide staining. Treatment of endometrial cancer cells (Ishikawa cells) with TGFβ (10 ng/ml) significantly decreased <i>SUSD2</i> transcript levels and the proportion of SUSD2 positive cells. Silencing of <i>SUSD2</i> using siRNA resulted in senescence and cell death of Ishikawa cells <i>via</i> activation of SMAD2/3. These findings suggest that SUSD2 counteracts senescence and cell death and is thus a potential chemotherapeutic target in human endometrial cancer.</p></div

    Titration and Time-course of the TGFβ effect on <i>SUSD2</i>+ Ishikawa cells.

    No full text
    <p>(A) Representative original FACS plots showing the effect of increasing TGFβ concentrations (Control, 1, 5, 10, 20, 50 ng/ml) for 72h on the percentage of SUSD2+ expressing cells. (B) Representative original FACS plots showing increasing abundance of SUSD2+ cells at 24h, 48h and 72h time points with TGFβ (10 ng/ml) or untreated (Control).</p

    Additional file 2: Figure S2. of Duck enteritis virus (DEV) UL54 protein, a novel partner, interacts with DEV UL24 protein

    No full text
    WB analyzed the expression of UL24-fusion protein and UL54-fusion protein in HEK293T cells. HEK293T cells were transfected with eukaryotic plasmid pCMV-myc, pCMV-myc-UL24, and pCMV-Flag-UL54 respectively. At 48 h post-infection, the 293 T cell extracts were carried out Western blotting analysis, which indicated that myc-UL24 and Flag-UL54 was expressed in 293 T cells and the molecular mass of fusion protein is about 45 KD, 50.5 KD respectively. Primary Abs against myc-UL24 and Flag-UL54 were serums of rabbit against UL24 and mouse against Flag respectively. (PDF 44 kb

    RELATEC : Revista latinoamericana de tecnología educativa

    No full text
    Resumen en inglésResumen basado en el de la publicaciónLa formación universitaria está viviendo uno de esos momentos donde el cambio se institucionaliza y hay que afrontar nuevos retos, básicamente impuestos. En ellos los docentes tendremos que asumir una modificación de nuestras percepciones y estar unidos para trabajar y converger en la universidad del Siglo XXI. Entendemos que es necesario el cambio, siempre y cuando lleve consigo un nuevo modelo de formación en el que el alumnado sea el protagonista de sus aprendizajes y el profesorado se convierta en facilitador de esos procesos. Para ello, deberá introducir nuevas formas de trabajo, tutoría, evaluación y seguimiento en las clases, bien empleando las Tecnologías de la Información y las Comunicaciones (TIC) como apoyo al proceso de enseñanza-aprendizaje, o incorporando nuevos materiales didácticos que favorezcan el aprendizaje autónomo del alumno y el desarrollo de competencias genéricas y específicas para su futuro profesional. Se expone desde la perspectiva transversal de los participantes, las principales conclusiones extraídas del proyecto: Análisis y Estudio de Experiencias Colaborativas Apoyadas en E-Learning para el Espacio Europeo de Enseñanza Superior en la Universidad de Valladolid. (Curso 2007-2008). A lo largo del artículo analizaremos los puntos fuertes y débiles, los aciertos, los problemas y las soluciones comunes en relación con el uso de las TIC respecto a las distintas experiencias evaluadas. Todo ello, con la intención de promover sugerencias a un planteamiento común en su integración de cara a mejorar y facilitar el proceso formativo y adaptación a los criterios propuestos desde el EEESES

    Additional file 1: Figure S1. of Preliminary study of the UL55 gene based on infectious Chinese virulent duck enteritis virus bacterial artificial chromosome clone

    No full text
    Schematic illustration of the strategy used to construct transfer vector pUC18/EGFP-TKAB-BAC11. The number in circle indicated different cloning steps. ❶: Cloning of EGFP into pUC18 for constructing pUC18/EGFP. ❷❸: TKA and TKB were amplified from DEV CHv and subsequently cloned into pUC18-EGFP to generate pUC18/EGFP-TKAB. ❹: Linearized pUC18/EGFP-TKAB and BAC Mini-F sequence donor pBeloBAC11 were obtained by Sph I digestion. ❺: Transfer vector pUC18/EGFP-TKAB-BAC11 harboring the homologous regions of TK insertion site, mini-F sequence of BAC and a cellular screening marker EGFP was generated after ligation. (PDF 534 kb

    Inhibition effects of resveratrol on DEV <i>in vitro</i><sup>a</sup>.

    No full text
    a<p>The inhibition effects on DEV were evaluated by MTT assay.</p>b<p>Inhibition concentration 50% (IC<sub>50</sub>): concentration required to inhibit DEV at 72 h post-infection by 50%.(n = 3).</p>c<p>Cytotoxic concentration 50% (CC<sub>50</sub>) concentration required to reduce cell viability by 50%. (n = 3).</p>d<p>SI: Selectivity index is defined as the radio of CC<sub>50</sub> to IC<sub>50</sub>.</p
    corecore