34 research outputs found

    Effects of base-pair sequence, nicks and gaps on DNA minicircle shapes:analysis and experiment

    Get PDF
    DNA is a long polymer with the form of a double helix of about two nanometers diameter (2.10-9 meters). It is composed of nucleotides whose sequence carries the information of heredity. The four possible nucleotides have slightly different geometries, and their sequence along the DNA molecule are thought to influence the shape and the stiffness of the double helix on a scale of few tens to a few hundred base pairs, and thereby its biological activity. DNA minicircles (or miniplasmids) are closed loops with lengths of the order of a few tens or hundreds of base pairs in which the double helix bends around to close on its own tail with some number of twists. Its minimal energy shape and its energy of formation depend on the sequence of base pairs, and can be efficiently computed by polymer and rod models, if shape and stiffness parameters of DNA are provided as inputs. This structure is therefore an interesting experimental motif to test sequence-dependent mechanical properties of the DNA molecule. The purpose of this thesis is to explore the experimental methods to determine the shape and free energy of formation of DNA minicircles. The shapes have been be determined from cryo-electron micrographs. Efficiency of formation has been investigated by a novel method called annealing-cyclization. Cryo-electron microscopy allows observation of very small molecules (here 17 or 11 nm diameter) in vitrified water, in order to keep the 3D shape of the molecules as close as possible to the shape they had in solution. In Chapter 1, I used stereo cryo-electron micrographs to determine and compare the three-dimensional shape of 95 individual DNA minicircles of 158 base pairs, which were identical in sequence except within a 18 bp block which contained either a TATA box sequence or a CAP site. I defined the notion of shape-distance which I used to estimate the error of reconstruction, and I detected clusters of shapes using an appropriate sorting algorithm. However the cluster did not seem to be associated with the variable sequence (TATA or CAP). I then analyzed (in Chapter 2) two-dimensional shapes of shorter DNA minicircles (94 bp) determined by negative staining electron microscopy, designed with either two nicks (breaks in one of the strands) or two gaps (missing nucleotides) at diametrically opposite sites of the minicircles. I observed that the gapped minicircles have an elongated shape with respect to the nicked minicircles, and I used this result together with the results of atomic level molecular dynamics simulations to conclude that the gap flexibility, perhaps together with base unpairing at the gap site, is responsible for this elongated minicircle shape. Finally, I proposed a ligase-free assay to measure the minicircle formation efficiency, which can give a high yield of nicked minicircles. The method avoids the use of ligase and the associated concerns about the effect of ligase concentration on the measurements. I determined an equation from a chemical model of the reaction that fits the experimental data, and I defined the Ja factor which gives a measure of the cyclization yield independent of DNA initial concentration. This method seems to confirm that minicircles with two gaps cyclize more efficiently that minicircles with two nicks, probably because of the gap flexibility. As a perspective, the conclusions of this thesis could be used for the design of minicircle constructs whose shape would be sensitive enough to sequence mutation in order to be detected by electron microscopy. Such shapes could be then compared, thanks to the shape-distance tool defined herein, to shapes computed with known or putative DNA models

    Probabilistic base calling of Solexa sequencing data

    Get PDF
    BACKGROUND: Solexa/Illumina short-read ultra-high throughput DNA sequencing technology produces millions of short tags (up to 36 bases) by parallel sequencing-by-synthesis of DNA colonies. The processing and statistical analysis of such high-throughput data poses new challenges; currently a fair proportion of the tags are routinely discarded due to an inability to match them to a reference sequence, thereby reducing the effective throughput of the technology. RESULTS: We propose a novel base calling algorithm using model-based clustering and probability theory to identify ambiguous bases and code them with IUPAC symbols. We also select optimal sub-tags using a score based on information content to remove uncertain bases towards the ends of the reads. CONCLUSION: We show that the method improves genome coverage and number of usable tags as compared with Solexa's data processing pipeline by an average of 15%. An R package is provided which allows fast and accurate base calling of Solexa's fluorescence intensity files and the production of informative diagnostic plots

    Bending modes of DNA directly addressed by cryo-electron microscopy of DNA minicircles

    Get PDF
    We use cryo-electron microscopy (cryo-EM) to study the 3D shapes of 94-bp-long DNA minicircles and address the question of whether cyclization of such short DNA molecules necessitates the formation of sharp, localized kinks in DNA or whether the necessary bending can be redistributed and accomplished within the limits of the elastic, standard model of DNA flexibility. By comparing the shapes of covalently closed, nicked and gapped DNA minicircles, we conclude that 94-bp-long covalently closed and nicked DNA minicircles do not show sharp kinks while gapped DNA molecules, containing very flexible single-stranded regions, do show sharp kinks. We corroborate the results of cryo-EM studies by using Bal31 nuclease to probe for the existence of kinks in 94-bp-long minicircle

    Bending modes of DNA directly addressed by cryo-electron microscopy of DNA minicircles

    Get PDF
    We use cryo-electron microscopy (cryo-EM) to study the 3D shapes of 94-bp-long DNA minicircles and address the question of whether cyclization of such short DNA molecules necessitates the formation of sharp, localized kinks in DNA or whether the necessary bending can be redistributed and accomplished within the limits of the elastic, standard model of DNA flexibility. By comparing the shapes of covalently closed, nicked and gapped DNA minicircles, we conclude that 94-bp-long covalently closed and nicked DNA minicircles do not show sharp kinks while gapped DNA molecules, containing very flexible single-stranded regions, do show sharp kinks. We corroborate the results of cryo-EM studies by using Bal31 nuclease to probe for the existence of kinks in 94-bp-long minicircles

    3D reconstruction and comparison of shapes of DNA minicircles observed by cryo-electron microscopy

    Get PDF
    We use cryo-electron microscopy to compare 3D shapes of 158 bp long DNA minicircles that differ only in the sequence within an 18 bp block containing either a TATA box or a catabolite activator protein binding site. We present a sorting algorithm that correlates the reconstructed shapes and groups them into distinct categories. We conclude that the presence of the TATA box sequence, which is believed to be easily bent, does not significantly affect the observed shapes

    Targeting transcription regulation in cancer with a covalent CDK7 inhibitor

    Get PDF
    Tumour oncogenes include transcription factors that co-opt the general transcriptional machinery to sustain the oncogenic state, but direct pharmacological inhibition of transcription factors has so far proven difficult. However, the transcriptional machinery contains various enzymatic cofactors that can be targeted for the development of new therapeutic candidates, including cyclin-dependent kinases (CDKs). Here we present the discovery and characterization of a covalent CDK7 inhibitor, THZ1, which has the unprecedented ability to target a remote cysteine residue located outside of the canonical kinase domain, providing an unanticipated means of achieving selectivity for CDK7. Cancer cell-line profiling indicates that a subset of cancer cell lines, including human T-cell acute lymphoblastic leukaemia (T-ALL), have exceptional sensitivity to THZ1. Genome-wide analysis in Jurkat T-ALL cells shows that THZ1 disproportionally affects transcription of RUNX1 and suggests that sensitivity to THZ1 may be due to vulnerability conferred by the RUNX1 super-enhancer and the key role of RUNX1 in the core transcriptional regulatory circuitry of these tumour cells. Pharmacological modulation of CDK7 kinase activity may thus provide an approach to identify and treat tumour types that are dependent on transcription for maintenance of the oncogenic state.National Institutes of Health (U.S.) (Grant HG002668)National Institutes of Health (U.S.) (Grant CA109901
    corecore