3 research outputs found

    Orthometalation of Dibenzo[1,2]quinoxaline with Ruthenium(II/III), Osmium(II/III/IV), and Rhodium(III) Ions and Orthometalated [RuNO]<sup>6/7</sup> Derivatives

    Get PDF
    A new family of organometallics of ruthenium­(II/III), osmium­(II/III/IV), and rhodium­(III) ions isolated from C–H activation reactions of dibenzo­[1,2]­quinoxaline (DBQ) using triphenylphosphine, carbonyl, and halides as coligands is reported. The CN–chelate complexes isolated are <i>trans-</i>[Ru<sup>III</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>1</b>), <i>trans-</i>[Ru<sup>II</sup>(DBQ)­(CO)­(PPh<sub>3</sub>)<sub>2</sub>Cl] (<b>2</b>), <i>trans-</i>[Os<sup>III</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>3</b>), <i>trans-</i>[Os<sup>II</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>(CO)­Br] (<b>4</b>), and <i>trans-</i>[Rh<sup>III</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>5</b>). Reaction of <b>1</b> with NO affords <i>trans-</i>[Ru­(DBQ)­(NO)­(PPh<sub>3</sub>)<sub>2</sub>Cl]Cl (<b>6</b><sup>+</sup>Cl<sup>–</sup>), isoelectronic to <b>2</b>, with a byproduct, [Ru­(NO)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>3</sub>] (<b>7</b>). Complexes <b>1</b>–<b>5</b> and <b>6</b><sup>+</sup> were characterized by elemental analyses, mass, IR, NMR, and electron paramagnetic resonance (EPR) spectra including the single-crystal X-ray structure determinations of <b>1</b>–<b>3</b> and <b>5</b>. The Ru<sup>III</sup>–C, Ru<sup>II</sup>–C, Os<sup>III</sup>–C, and Rh<sup>III</sup>–C lengths are 2.049(2), 2.074(3), 2.105(16), and 2.012(3) Å in <b>1</b>, <b>2</b>, <b>3</b>, and <b>5</b>. In cyclic voltammetry, <b>2</b>, <b>3</b>, and <b>4</b> undergo oxidation at 0.59, 0.39, and 0.46 V, versus Fc<sup>+</sup>/Fc couple, to <i>trans-</i>[Ru<sup>III</sup>(DBQ)­(CO)­(PPh<sub>3</sub>)<sub>2</sub>Cl]<sup>+</sup> (<b>2</b><sup>+</sup>), <i>trans-</i>[Os<sup>IV</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>]<sup>+</sup> (<b>3</b><sup>+</sup>), and <i>trans-</i>[Os<sup>III</sup>(DBQ)­(CO)­(PPh<sub>3</sub>)<sub>2</sub>Br]<sup>+</sup> (<b>4</b><sup>+</sup>) ions. Complex <b>3</b><sup>+</sup> incorporates an Os<sup>IV</sup>(d<sup>4</sup> ion)–C bond. The <b>6</b><sup>+</sup>/<i>trans-</i>[Ru­(DBQ)­(NO)­(PPh<sub>3</sub>)<sub>2</sub>Cl] (<b>6</b>) reduction couple at −0.65 V is reversible. <b>2</b><sup>+</sup>, <b>3</b><sup>+</sup>, <b>4</b><sup>+</sup> and <b>6</b> were substantiated by spectroelectrochemical measurements, EPR spectra, and density functional theory (DFT) and time-dependent (TD) DFT calculations. The frozen-glass EPR spectrum of the electrogenerated <b>6</b> exhibits hyperfine couplings due to <sup>99,101</sup>Ru and <sup>14</sup>N nuclei. DFT calculations on <i>trans-</i>[Os<sup>III</sup>(DBQ)­(PMe<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>3</b><sup>Me</sup>), S<sub>t</sub> = 1/2 and <i>trans-</i>[Os<sup>IV</sup>(DBQ)­(PMe<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>]<sup>+</sup> (<b>3</b><sup>Me+</sup>), S<sub>t</sub> = 0, <i>trans-</i>[Ru­(DBQ)­(NO)­(PMe<sub>3</sub>)<sub>2</sub>Cl]<sup>+</sup> (<b>6</b><sup>Me+</sup>), S<sub>t</sub> = 0 and <i>trans-</i>[Ru­(DBQ)­(NO)­(PMe<sub>3</sub>)<sub>2</sub>Cl] (<b>6</b><sup>Me</sup>), S<sub>t</sub> = 1/2, authenticated a significant mixing between d<sub>Os</sub> and π<sub>aromatic</sub>* orbitals, which stabilizes M<sup>II/III/IV</sup>–C bonds and the [RuNO]<sup>6</sup> and [RuNO]<sup>7</sup> states, respectively, in <b>6</b><sup>+</sup> and <b>6</b>, which is defined as a hybrid state of <i>trans-</i>[Ru<sup>II</sup>(DBQ)­(NO<sup>•</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl] and <i>trans-</i>[Ru<sup>I</sup>(DBQ)­(NO<sup>+</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl] states

    Orthometalation of Dibenzo[1,2]quinoxaline with Ruthenium(II/III), Osmium(II/III/IV), and Rhodium(III) Ions and Orthometalated [RuNO]<sup>6/7</sup> Derivatives

    No full text
    A new family of organometallics of ruthenium­(II/III), osmium­(II/III/IV), and rhodium­(III) ions isolated from C–H activation reactions of dibenzo­[1,2]­quinoxaline (DBQ) using triphenylphosphine, carbonyl, and halides as coligands is reported. The CN–chelate complexes isolated are <i>trans-</i>[Ru<sup>III</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>1</b>), <i>trans-</i>[Ru<sup>II</sup>(DBQ)­(CO)­(PPh<sub>3</sub>)<sub>2</sub>Cl] (<b>2</b>), <i>trans-</i>[Os<sup>III</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>3</b>), <i>trans-</i>[Os<sup>II</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>(CO)­Br] (<b>4</b>), and <i>trans-</i>[Rh<sup>III</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>5</b>). Reaction of <b>1</b> with NO affords <i>trans-</i>[Ru­(DBQ)­(NO)­(PPh<sub>3</sub>)<sub>2</sub>Cl]Cl (<b>6</b><sup>+</sup>Cl<sup>–</sup>), isoelectronic to <b>2</b>, with a byproduct, [Ru­(NO)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>3</sub>] (<b>7</b>). Complexes <b>1</b>–<b>5</b> and <b>6</b><sup>+</sup> were characterized by elemental analyses, mass, IR, NMR, and electron paramagnetic resonance (EPR) spectra including the single-crystal X-ray structure determinations of <b>1</b>–<b>3</b> and <b>5</b>. The Ru<sup>III</sup>–C, Ru<sup>II</sup>–C, Os<sup>III</sup>–C, and Rh<sup>III</sup>–C lengths are 2.049(2), 2.074(3), 2.105(16), and 2.012(3) Å in <b>1</b>, <b>2</b>, <b>3</b>, and <b>5</b>. In cyclic voltammetry, <b>2</b>, <b>3</b>, and <b>4</b> undergo oxidation at 0.59, 0.39, and 0.46 V, versus Fc<sup>+</sup>/Fc couple, to <i>trans-</i>[Ru<sup>III</sup>(DBQ)­(CO)­(PPh<sub>3</sub>)<sub>2</sub>Cl]<sup>+</sup> (<b>2</b><sup>+</sup>), <i>trans-</i>[Os<sup>IV</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>]<sup>+</sup> (<b>3</b><sup>+</sup>), and <i>trans-</i>[Os<sup>III</sup>(DBQ)­(CO)­(PPh<sub>3</sub>)<sub>2</sub>Br]<sup>+</sup> (<b>4</b><sup>+</sup>) ions. Complex <b>3</b><sup>+</sup> incorporates an Os<sup>IV</sup>(d<sup>4</sup> ion)–C bond. The <b>6</b><sup>+</sup>/<i>trans-</i>[Ru­(DBQ)­(NO)­(PPh<sub>3</sub>)<sub>2</sub>Cl] (<b>6</b>) reduction couple at −0.65 V is reversible. <b>2</b><sup>+</sup>, <b>3</b><sup>+</sup>, <b>4</b><sup>+</sup> and <b>6</b> were substantiated by spectroelectrochemical measurements, EPR spectra, and density functional theory (DFT) and time-dependent (TD) DFT calculations. The frozen-glass EPR spectrum of the electrogenerated <b>6</b> exhibits hyperfine couplings due to <sup>99,101</sup>Ru and <sup>14</sup>N nuclei. DFT calculations on <i>trans-</i>[Os<sup>III</sup>(DBQ)­(PMe<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>3</b><sup>Me</sup>), S<sub>t</sub> = 1/2 and <i>trans-</i>[Os<sup>IV</sup>(DBQ)­(PMe<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>]<sup>+</sup> (<b>3</b><sup>Me+</sup>), S<sub>t</sub> = 0, <i>trans-</i>[Ru­(DBQ)­(NO)­(PMe<sub>3</sub>)<sub>2</sub>Cl]<sup>+</sup> (<b>6</b><sup>Me+</sup>), S<sub>t</sub> = 0 and <i>trans-</i>[Ru­(DBQ)­(NO)­(PMe<sub>3</sub>)<sub>2</sub>Cl] (<b>6</b><sup>Me</sup>), S<sub>t</sub> = 1/2, authenticated a significant mixing between d<sub>Os</sub> and π<sub>aromatic</sub>* orbitals, which stabilizes M<sup>II/III/IV</sup>–C bonds and the [RuNO]<sup>6</sup> and [RuNO]<sup>7</sup> states, respectively, in <b>6</b><sup>+</sup> and <b>6</b>, which is defined as a hybrid state of <i>trans-</i>[Ru<sup>II</sup>(DBQ)­(NO<sup>•</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl] and <i>trans-</i>[Ru<sup>I</sup>(DBQ)­(NO<sup>+</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl] states

    Orthometalation of Dibenzo[1,2]quinoxaline with Ruthenium(II/III), Osmium(II/III/IV), and Rhodium(III) Ions and Orthometalated [RuNO]<sup>6/7</sup> Derivatives

    No full text
    A new family of organometallics of ruthenium­(II/III), osmium­(II/III/IV), and rhodium­(III) ions isolated from C–H activation reactions of dibenzo­[1,2]­quinoxaline (DBQ) using triphenylphosphine, carbonyl, and halides as coligands is reported. The CN–chelate complexes isolated are <i>trans-</i>[Ru<sup>III</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>1</b>), <i>trans-</i>[Ru<sup>II</sup>(DBQ)­(CO)­(PPh<sub>3</sub>)<sub>2</sub>Cl] (<b>2</b>), <i>trans-</i>[Os<sup>III</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>3</b>), <i>trans-</i>[Os<sup>II</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>(CO)­Br] (<b>4</b>), and <i>trans-</i>[Rh<sup>III</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>5</b>). Reaction of <b>1</b> with NO affords <i>trans-</i>[Ru­(DBQ)­(NO)­(PPh<sub>3</sub>)<sub>2</sub>Cl]Cl (<b>6</b><sup>+</sup>Cl<sup>–</sup>), isoelectronic to <b>2</b>, with a byproduct, [Ru­(NO)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>3</sub>] (<b>7</b>). Complexes <b>1</b>–<b>5</b> and <b>6</b><sup>+</sup> were characterized by elemental analyses, mass, IR, NMR, and electron paramagnetic resonance (EPR) spectra including the single-crystal X-ray structure determinations of <b>1</b>–<b>3</b> and <b>5</b>. The Ru<sup>III</sup>–C, Ru<sup>II</sup>–C, Os<sup>III</sup>–C, and Rh<sup>III</sup>–C lengths are 2.049(2), 2.074(3), 2.105(16), and 2.012(3) Å in <b>1</b>, <b>2</b>, <b>3</b>, and <b>5</b>. In cyclic voltammetry, <b>2</b>, <b>3</b>, and <b>4</b> undergo oxidation at 0.59, 0.39, and 0.46 V, versus Fc<sup>+</sup>/Fc couple, to <i>trans-</i>[Ru<sup>III</sup>(DBQ)­(CO)­(PPh<sub>3</sub>)<sub>2</sub>Cl]<sup>+</sup> (<b>2</b><sup>+</sup>), <i>trans-</i>[Os<sup>IV</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>]<sup>+</sup> (<b>3</b><sup>+</sup>), and <i>trans-</i>[Os<sup>III</sup>(DBQ)­(CO)­(PPh<sub>3</sub>)<sub>2</sub>Br]<sup>+</sup> (<b>4</b><sup>+</sup>) ions. Complex <b>3</b><sup>+</sup> incorporates an Os<sup>IV</sup>(d<sup>4</sup> ion)–C bond. The <b>6</b><sup>+</sup>/<i>trans-</i>[Ru­(DBQ)­(NO)­(PPh<sub>3</sub>)<sub>2</sub>Cl] (<b>6</b>) reduction couple at −0.65 V is reversible. <b>2</b><sup>+</sup>, <b>3</b><sup>+</sup>, <b>4</b><sup>+</sup> and <b>6</b> were substantiated by spectroelectrochemical measurements, EPR spectra, and density functional theory (DFT) and time-dependent (TD) DFT calculations. The frozen-glass EPR spectrum of the electrogenerated <b>6</b> exhibits hyperfine couplings due to <sup>99,101</sup>Ru and <sup>14</sup>N nuclei. DFT calculations on <i>trans-</i>[Os<sup>III</sup>(DBQ)­(PMe<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>3</b><sup>Me</sup>), S<sub>t</sub> = 1/2 and <i>trans-</i>[Os<sup>IV</sup>(DBQ)­(PMe<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>]<sup>+</sup> (<b>3</b><sup>Me+</sup>), S<sub>t</sub> = 0, <i>trans-</i>[Ru­(DBQ)­(NO)­(PMe<sub>3</sub>)<sub>2</sub>Cl]<sup>+</sup> (<b>6</b><sup>Me+</sup>), S<sub>t</sub> = 0 and <i>trans-</i>[Ru­(DBQ)­(NO)­(PMe<sub>3</sub>)<sub>2</sub>Cl] (<b>6</b><sup>Me</sup>), S<sub>t</sub> = 1/2, authenticated a significant mixing between d<sub>Os</sub> and π<sub>aromatic</sub>* orbitals, which stabilizes M<sup>II/III/IV</sup>–C bonds and the [RuNO]<sup>6</sup> and [RuNO]<sup>7</sup> states, respectively, in <b>6</b><sup>+</sup> and <b>6</b>, which is defined as a hybrid state of <i>trans-</i>[Ru<sup>II</sup>(DBQ)­(NO<sup>•</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl] and <i>trans-</i>[Ru<sup>I</sup>(DBQ)­(NO<sup>+</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl] states
    corecore