26 research outputs found

    Simulation and Synthesis for Cardiac Magnetic Resonance Image Analysis

    Get PDF

    Simulation and Synthesis for Cardiac Magnetic Resonance Image Analysis

    Get PDF

    Simulated late gadolinium enhanced cardiac magnetic resonance imaging dataset from mechanical XCAT phantom including a myocardial infarct

    Get PDF
    The late enhanced magnetic resonance image dataset in this article is simulated using a mechanistic cardiac phantom that includes an myocardial infarct. Settings of the image simulation pipeline are adjusted such that high- and low-resolution images, with and without slice alignment artifacts, are simulated. Our article on the influence of image artifacts on image-based models of the cardiac electrophysiology is based on this data (Kruithof et al., 2021). This dataset provides image-analysis researchers a reference to perform validation of their methods using the included high-resolution ground truth image, a resource that is often unavailable clinically.</p

    Histogram- and Diffusion-Based Medical Out-of-Distribution Detection

    Full text link
    Out-of-distribution (OOD) detection is crucial for the safety and reliability of artificial intelligence algorithms, especially in the medical domain. In the context of the Medical OOD (MOOD) detection challenge 2023, we propose a pipeline that combines a histogram-based method and a diffusion-based method. The histogram-based method is designed to accurately detect homogeneous anomalies in the toy examples of the challenge, such as blobs with constant intensity values. The diffusion-based method is based on one of the latest methods for unsupervised anomaly detection, called DDPM-OOD. We explore this method and propose extensive post-processing steps for pixel-level and sample-level anomaly detection on brain MRI and abdominal CT data provided by the challenge. Our results show that the proposed DDPM method is sensitive to blur and bias field samples, but faces challenges with anatomical deformation, black slice, and swapped patches. These findings suggest that further research is needed to improve the performance of DDPM for OOD detection in medical images.Comment: 9 pages, 5 figures, submission to Medical Out-of-Distribution (MOOD) challenge at MICCAI 202

    Pathology Synthesis of 3D Consistent Cardiac MR Images Using 2D VAEs and GANs

    Get PDF
    We propose a method for synthesizing cardiac MR images with plausible heart shapes and realistic appearances for the purpose of generating labeled data for deep-learning (DL) training. It breaks down the image synthesis into label deformation and label-to-image translation tasks. The former is achieved via latent space interpolation in a VAE model, while the latter is accomplished via a conditional GAN model. We devise an approach for label manipulation in the latent space of the trained VAE model, namely pathology synthesis, aiming to synthesize a series of pseudo-pathological synthetic subjects with characteristics of a desired heart disease. Furthermore, we propose to model the relationship between 2D slices in the latent space of the VAE via estimating the correlation coefficient matrix between the latent vectors and utilizing it to correlate elements of randomly drawn samples before decoding to image space. This simple yet effective approach results in generating 3D consistent subjects from 2D slice-by-slice generations. Such an approach could provide a solution to diversify and enrich the available database of cardiac MR images and to pave the way for the development of generalizable DL-based image analysis algorithms. The code will be available at https://github.com/sinaamirrajab/CardiacPathologySynthesis

    Pathology Synthesis of 3D-Consistent Cardiac MR Images using 2D VAEs and GANs

    Full text link
    We propose a method for synthesizing cardiac magnetic resonance (MR) images with plausible heart pathologies and realistic appearances for the purpose of generating labeled data for the application of supervised deep-learning (DL) training. The image synthesis consists of label deformation and label-to-image translation tasks. The former is achieved via latent space interpolation in a VAE model, while the latter is accomplished via a label-conditional GAN model. We devise three approaches for label manipulation in the latent space of the trained VAE model; i) \textbf{intra-subject synthesis} aiming to interpolate the intermediate slices of a subject to increase the through-plane resolution, ii) \textbf{inter-subject synthesis} aiming to interpolate the geometry and appearance of intermediate images between two dissimilar subjects acquired with different scanner vendors, and iii) \textbf{pathology synthesis} aiming to synthesize a series of pseudo-pathological synthetic subjects with characteristics of a desired heart disease. Furthermore, we propose to model the relationship between 2D slices in the latent space of the VAE prior to reconstruction for generating 3D-consistent subjects from stacking up 2D slice-by-slice generations. We demonstrate that such an approach could provide a solution to diversify and enrich an available database of cardiac MR images and to pave the way for the development of generalizable DL-based image analysis algorithms. We quantitatively evaluate the quality of the synthesized data in an augmentation scenario to achieve generalization and robustness to multi-vendor and multi-disease data for image segmentation. Our code is available at https://github.com/sinaamirrajab/CardiacPathologySynthesis.Comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://www.melba-journal.org/2023:01

    A Deep Learning Approach Utilizing Covariance Matrix Analysis for the ISBI Edited MRS Reconstruction Challenge

    Get PDF
    This work proposes a method to accelerate the acquisition of high-quality edited magnetic resonance spectroscopy (MRS) scans using machine learning models taking the sample covariance matrix as input. The method is invariant to the number of transients and robust to noisy input data for both synthetic as well as in-vivo scenarios

    A review of machine learning applications for the proton MR spectroscopy workflow

    Get PDF
    This literature review presents a comprehensive overview of machine learning (ML) applications in proton MR spectroscopy (MRS). As the use of ML techniques in MRS continues to grow, this review aims to provide the MRS community with a structured overview of the state-of-the-art methods. Specifically, we examine and summarize studies published between 2017 and 2023 from major journals in the MR field. We categorize these studies based on a typical MRS workflow, including data acquisition, processing, analysis, and artificial data generation. Our review reveals that ML in MRS is still in its early stages, with a primary focus on processing and analysis techniques, and less attention given to data acquisition. We also found that many studies use similar model architectures, with little comparison to alternative architectures. Additionally, the generation of artificial data is a crucial topic, with no consistent method for its generation. Furthermore, many studies demonstrate that artificial data suffers from generalization issues when tested on in vivo data. We also conclude that risks related to ML models should be addressed, particularly for clinical applications. Therefore, output uncertainty measures and model biases are critical to investigate. Nonetheless, the rapid development of ML in MRS and the promising results from the reviewed studies justify further research in this field.</p

    Advancing GABA-edited MRS Research through a Reconstruction Challenge

    Get PDF
    Purpose To create a benchmark for the comparison of machine learning-based Gamma-Aminobutyric Acid (GABA)-edited Magnetic Resonance Spectroscopy (MRS) reconstruction models using one quarter of the transients typically acquired during a complete scan.Methods The Edited-MRS reconstruction challenge had three tracks with the purpose of evaluating machine learning models trained to reconstruct simulated (Track 1), homogeneous in vivo (Track 2), and heterogeneous in vivo (Track 3) GABA-edited MRS data. Four quantitative metrics were used to evaluate the results: mean squared error (MSE), signal-to-noise ratio (SNR), linewidth, and a shape score metric that we proposed. Challenge participants were given three months to create, train and submit their models. Challenge organizers provided open access to a baseline U-NET model for initial comparison, as well as simulated data, in vivo data, and tutorials and guides for adding synthetic noise to the simulations.Results The most successful approach for Track 1 simulated data was a covariance matrix convolutional neural network model, while for Track 2 and Track 3 in vivo data, a vision transformer model operating on a spectrogram representation of the data achieved the most success. Deep learning (DL) based reconstructions with reduced transients achieved equivalent or better SNR, linewidth and fit error as conventional reconstructions with the full amount of transients. However, some DL models also showed the ability to optimize the linewidth and SNR values without actually improving overall spectral quality, pointing to the need for more robust metrics.Conclusion The edited-MRS reconstruction challenge showed that the top performing DL based edited-MRS reconstruction pipelines can obtain with a reduced number of transients equivalent metrics to conventional reconstruction pipelines using the full amount of transients. The proposed metric shape score was positively correlated with challenge track outcome indicating that it is well-suited to evaluate spectral quality.Competing Interest StatementThe authors have declared no competing interest
    corecore