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2 Chapter 1. Introduction

1.1 Simulation and Synthesis for Cardiac MRI

Cardiovascular magnetic resonance (CMR) imaging has become an essential tool
in cardiology as a non-invasive modality and the gold standard technique to
assess heart anatomy, regional and global function, as well as myocardial viability.
Functional analysis of the heart through calculation of the left and right ventricular
volumes, ejection fraction, and stroke volumes requires accurate delineation of the
heart structures at the end-diastolic and end-systolic phases. Due to the limited
accuracy of fully-automated cardiac image segmentation methods, semi-automated
approaches are still preferred in clinical practice. Applying state-of-the-art deep
learning (DL) methods to the field of medical image analysis faces several chal-
lenges and issues regarding the availability of high-quality medical data. A limited
number of CMR images with ground truth labels hampers the development of
data-hungry supervised deep convolutional neural networks (CNNs) for automated
image segmentation.

In this thesis, we develop and investigate different approaches to generate a
substantial number of realistic CMR images with corresponding ground truth
labels that can be utilized for training supervised CNNs for the task of cardiac
tissue segmentation. In particular, we present solutions for two main categories
of image generation, namely physics-driven image simulation and data-driven
image synthesis. The former is grounded on the underlying physics of MR image
formation based on the so-called Bloch equations to simulate data, whereas the
latter applies recent methods based on conditional deep generative models to
synthesize data.

We refer to the terms image Simulation and image Synthesis many times
throughout this thesis. In simulation, which refers to mechanistic (hypothesis-
driven) models, we commonly employ first principle formulations for image gen-
eration while in synthesis, which refers to phenomenological (data-driven) models
we begin with available data [1].

Image simulation is considered the modeling of the process of magnetic res-
onance image formation using the underlying physics of imaging governed by
so called Bloch equations. Three main ingredients are involved in the process
of MR image simulation; 1) computerized anatomical model to provide human
anatomy with sufficient detail of organs and structures of interest, i.e. the heart
and surrounding organs visible in the cardiac MR image field-of-view (FOV), 2)
MR related tissue properties such as longitudinal relaxation time (T1), transversal
relaxation time (T2) and proton density (PD) for each tissue and organ in the
FOV of simulation, and 3) mathematical equations and operations for the specific
imaging sequence including acquisition parameters such as repetition (TR), echo
time (TE), radio frequency (RF) flip angle (FA), matrix size and the spatial
resolution of the imaging.

Image synthesis involves learning imaging features and anatomical character-



1.2. Summary of this Thesis 3

istics from abundant data and in turn generating new images. Deep genera-
tive models such as generative adversarial networks (GANs) [2] and variational
auto-encoder (VAEs) [3] are two well-known deep learning models for learning
probability density function of the data. We utilize such algorithms to learn
the generating factors of the training data and synthesize new examples with
corresponding ground truth labels.

1.2 Summary of this Thesis

The scope of the research mainly concerns with generating training data for deep
learning application and investigating the benefit of that for the clinical application
of cardiac MR image segmentation, among other applications which remained
unexplored. Two main methods of physics-based image simulation and data-driven
image synthesis are proposed and evaluated for cardiac image analysis throughout
this thesis. Each chapter includes both methodological developments and specific
usability evaluation of the results.

In Chapter 2, we develop a flexible framework for simulating CMR images
with variable anatomical and imaging characteristics for the purpose of creating
a diversified virtual population. We advance previous works on both cardiac MR
image simulation and anatomical modeling to increase the realism in terms of
both image appearance and underlying anatomy. A database of virtual subjects
is simulated and its usefulness for aiding a DL segmentation method is evaluated.
Our experiments show that training completely with simulated images achieves
comparable performance to a model trained with real images for heart cavity
segmentation in mid-ventricular slices. Moreover, we demonstrate that such sim-
ulated data can be used in addition to classical augmentation for boosting the
performance of the augmented model, and in a scenario that only 45% of the real
data is available, the baseline performance (trained with all real images) is retained
when the simulated data is added during training.

Next, in Chapter 3 we propose a novel framework consisting of image seg-
mentation and synthesis based on mask-conditional generative adversarial net-
works (GANs) for generating high-fidelity and diverse CMR images with vari-
able anatomical representation. Extensive experiments are conducted to analyze
the importance of different modules in the framework for synthesizing highly-
realistic images. Leveraging label-conditioned normalization layers throughout the
generator architecture allows for the preservation of content information, while
at the same time accurately transferring the image characteristics of real data.
Furthermore, one of the main findings of this work is the importance of intro-
ducing detailed labels in the form of multi-tissue maps for generation of highly
realistic images with accurate anatomies even with a significantly smaller number
of training data, compared to utilizing only cavity-tissue labels during training.
Furthermore, we evaluate the effectiveness and usability of the synthetic data in
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the scenarios of data replacement and augmentation for training a segmentation
network. The results of the replacement study indicate that segmentation mod-
els trained with only synthetic data can achieve comparable performance to the
baseline model trained with real data, indicating that the synthetic data captures
the essential characteristics of its real counterpart. Furthermore, augmenting real
with synthetic data during training can significantly improve both the Dice score
(maximum increase of 4%) and Hausdorff Distance (maximum reduction of 40%)
for cavity segmentation, suggesting a good potential to aid in tackling medical
data scarcity.

Chapter 4 provides solutions to the challenge of generating plausible heart
geometries for synthesizing a CMR image database, including virtual subjects
with characteristics of a particular heart pathology. We propose to break down
the task of CMR image synthesis into 1) learning the deformation of anatomical
content of the ground truth (GT) labels using variational auto-encoders and 2)
translating GT labels to realistic images using conditional GANs. We devise
different strategies to deform labels in the latent space of the VAE and generate
various virtual subjects via three difference approaches, namely i) intra-subject
synthesis to improve the through-plane resolution and generate intermediate short-
axis slices within a given subject, ii) inter-subject synthesis to generate interme-
diate heart geometries and appearance between two dissimilar subjects scanned
using two different scanner vendors, and iii) pathology synthesis to generate virtual
subjects with a target heart disease that affects the heart geometry, e.g. synthe-
sizing a pseudo-pathological subject with thickened myocardium for hypertrophic
cardiomyopathy. All mentioned approaches are accomplished via manipulation
and interpolation in the latent space of our VAE model trained on GT labels.
Furthermore, we propose to model the relationship between 2D slices in the
latent space of the VAE through estimating the correlation coefficient matrix
between the latent vectors and utilizing it to correlate elements of randomly
drawn samples before decoding to image space. This simple yet effective approach
results in generating 3D consistent subjects from 2D slice-by-slice generations. We
demonstrated that our approach could provide a solution to diversify and enrich an
available database of cardiac MR images, resulting in significant improvements in
model performance for cardiac segmentation of subjects with unseen heart diseases.

In Chapter 5 we investigate an application of the late-gadolinium enhanced
CMR image synthesis for improving the model accuracy and robustness for auto-
mated myocardial scar quantification. We generate new pairs of synthetic LGE
images by applying morphological operations including elastic deformation, dila-
tion and rotation on the scar geometry. We demonstrate that data augmentation
using synthesized LGE images with variable scar shapes further improves the
performance of the scar segmentation and quantification.

Another application of the image synthesis for improving model robustness to
multi-vendor, multi-center, multi-view and multi-disease CMR images is presented
in Chapter 6. To augment and balance out the real data, we utilize conditional
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GANs, developed in previous chapters, to generate a large number of realistic-
looking images with corresponding labels including variations in contrast, heart
appearance and pathology. In particular, we try to identify outlier cases based on
the calculated heart volume and synthesize more anatomical variations on them
to provide a balanced synthetic data. Extensive experiments and analysis demon-
strate the ability of the proposed approach to significantly reduce the number of
outliers during segmentation and adapt better to unseen and difficult examples.
We show that synthesizing a diverse training dataset, carefully designed to increase
the variation of cardiac shapes and appearances during training, plays a significant
role in not only boosting the model performance in terms of standard quantitative
metrics, but also in improving the automatically derived clinical metrics denoting
the function of the heart. This in turn leads to improved stability and reliability
of the predictions across both short-axis and long-axis images.

Chapter 7 is a short feasibility study with the purpose of reconciling the two
worlds of simulation and synthesis. We present a sim2real translation network
to reduce the realism gap between simulated and real data using GANs for un-
paired/unsupervised style transfer.

Finally, Chapter 8 concludes this thesis with a discussion of the important
findings and an outlook for future research directions.

In short, various studies presented in this thesis demonstrate the benefits of
simulating and synthesizing cardiac magnetic resonance images with corresponding
labels for data augmentation for boosting the performance and tackling medical
data scarcity in the context of developing supervised deep-learning medical image
analysis algorithms.
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CHAPTER2
A Framework for Image Simulation

This chapter is based on:
S. Amirrajab, Y. Al Khalil, C. Lorenz, J. Weese, J. Pluim, M. Breeuwer, “A Framework for
Simulating Cardiac MR Images with Varying Anatomy and Contrast,” IEEE Transactions on
Medical Imaging, 2022.
Which is an extension of:
S. Amirrajab, W. P. Segars, C. Lorenz, J. Weese, M. Breeuwer, “Towards Realistic Cardiac
MR Image Simulation; Inclusion of the Endocardial Trabeculae in the XCAT Heart Anatomy,”
ISMRM 2020.
S. Amirrajab, Y. Al Khalil, C. Lorenz, J. Weese, M. Breeuwer, “Generation of Realistic and
Heterogeneous Virtual Population of Cardiovascular Magnetic Resonance Simulated Images,”
ISMRM 2020.
Y. Al Khalil, S. Amirrajab, C. Lorenz, J. Weese, M. Breeuwer, “Heterogeneous Virtual Pop-
ulation of Simulated CMR Images for Improving the Generalization of Cardiac Segmentation
Algorithms,” SASHIMI workshop MICCAI 2020.

7
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Abstract

One of the limiting factors for the development and adoption of novel deep-
learning (DL) based medical image analysis methods is the scarcity of labeled
medical images. Medical image simulation and synthesis can provide solutions by
generating ample training data with corresponding ground truth labels. Despite
recent advances, generated images demonstrate limited realism and diversity. In
this work, we develop a flexible framework for simulating cardiac magnetic res-
onance (MR) images with variable anatomical and imaging characteristics for
the purpose of creating a diversified virtual population. We advance previous
works on both cardiac MR image simulation and anatomical modeling to increase
the realism in terms of both image appearance and underlying anatomy. To
diversify the generated images, we define parameters: 1) to alter the anatomy,
2) to assign MR tissue properties to various tissue types, and 3) to manipulate
the image contrast via acquisition parameters. The proposed framework is op-
timized to generate a substantial number of cardiac MR images with ground
truth labels suitable for downstream supervised tasks. A database of virtual
subjects is simulated and its usefulness for aiding a DL segmentation method
is evaluated. Our experiments show that training completely with simulated
images can perform comparable with a model trained with real images for heart
cavity segmentation in mid-ventricular slices. Moreover, such data can be used
in addition to classical augmentation for boosting the performance when training
data is limited, particularly by increasing the contrast and anatomical variation,
leading to better regularization and generalization. The database is publicly
available at https://osf.io/bkzhm/ and the simulation code will be available
at https://github.com/sinaamirrajab/CMRI_Simulation .

https://osf.io/bkzhm/
https://github.com/sinaamirrajab/CMRI_Simulation
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2.1 Introduction

Simulation and synthesis have recently received great recognition in the medical
imaging community. This has been achieved thanks to the solutions that image
generation approaches can provide to medical data challenges such as data scarcity,
privacy, expert dependency, and expensive collection procedure. The synergies
between different approaches, various applications, challenges, and opportunities
have been highlighted in the recent editorial by Frangi et al. [1]. With devel-
opments in machine learning methods, there is an ever-growing demand for a
large heterogeneous medical database that represents enough variability in both
anatomical representation and image appearances. Such a diverse database can
pave the way for developing, validating, and benchmarking accurate and robust
medical image analysis methods that can be employed in routine clinical practice.

In attempts towards generating realistic Cardiac Magnetic Resonance (CMR)
images, there has been recent progress in three categories: i) physics-driven image
simulation; ii) data-driven image synthesis; and iii) hybrid image generation.
In the physics-driven simulation approach, the underlying physics for MR con-
trast formation, governed by Bloch equations, is implemented and a computerized
anatomical model is used to resemble a virtual patient. MR relevant tissue prop-
erties are assigned to each label class in the anatomical model to be fed to an
image simulator to produce image contrast. The second category uses existing
cardiac MR image data to train a generative model that learns the appearance of
images and in turn synthesizes similar-looking images. In the final category, the
hybrid approach combines patient image data with a biophysical model of the heart
to generate images with altered geometry that is informed by mechanical motion
parameters. For the purpose of generating diversified images with variable contrast
and anatomy, each approach has its distinct advantages and disadvantages.

2.1.1 Physics-Driven Image Simulation

Image simulation is performed by combining a spatio-temporal model representing
anatomy of interest and a simulator that encompasses the physics of image forma-
tion given a set of controllable parameters. In this category, the Virtual Imaging
Platform provides an integrated open-access platform for sharing object models
and multi-modality medical image simulation pipelines [4]. However, it consists
of only one MR sequence with pre-defined scan parameters on one anatomical
model with a simplistic heart geometry and a limited number of surrounding
anatomical structures. Among one of the first attempts to generate CMR image
data, Tobon-Gomez et al. [5] investigate physics-based image simulation using
the MRISIM simulator developed by Kwan et al. in [6] and anatomical models
generated from eXtendec CArdiac and Torso (XCAT) phantoms [7]. The authors
put effort into making the simulated images more realistic by modeling the left
ventricular papillary muscles and trabeculation. They use real patient data to
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create a simplified mathematical model of cylindrical objects for the papillary
muscles and small discs at random regions adjacent to the ventricular wall for heart
trabeculation. More recently, based on the original XCAT anatomical phantom,
Wissmann et al. in [8] developed a numerical simulation framework suitable for
optimizing CMR sampling trajectory, post-processing methods, and reconstruction
strategies in the presence of beating and breathing motions, which is referred to as
MRXCAT. Despite the modifications to the anatomical model and the simulation
approach, the resulting simulated images for both approaches are still far from
reality in terms of the detailed structures of the used heart model, the number
of neighboring organs visible in the field of view, and the realism of the image
contrast and resolution.

2.1.2 Data-Driven Image Synthesis

With the advent of generative modelling and the emergence of various techniques
for synthesizing images using available clinical data, new methods have been
adopted by researchers in the medical imaging community [9, 10]. In particular,
Generative Adversarial Networks (GANs) [2] are at the center of most recently
proposed models. To provide labeled data for training a segmentation model,
some works proposed multi-modal style transfer method for transferring the image
appearance (known as style) of the real images to the anatomical information
(known as content) of another imaging modality where the content of the synthetic
data comes from the heart annotations of cine CMR images in [11] and [12], or CT
cardiac images in [13]. While these methods are able to generate realistic-looking
images, they allow limited control over the image synthesis procedure, meaning
that neither the underlying anatomy content, nor the local tissue intensity and
global image contrast of the generated images can be controlled. Disentangling the
anatomy factors from the modality features, Joyce et al. in [14] designed separate
variational auto encoder (VAE) models [3] for simultaneously learning multi-tissue
anatomical model, a deformation model, and an image intensity rendering model.
Factorizing the information in the data in this way can provide partial control
over generating variable anatomy and overall image appearance. However, the
synthetic data may not necessarily represent an accurate anatomy that is required
for the downstream supervised tasks. Furthermore, the contrast is not controllable
locally and the generated tissue intensity is not based on the physics of MR signal
evolution.

2.1.3 Hybrid Image Generation

Combining a biophysical model of the heart with a set of real clinical images in
a hybrid approach, Prakosa et al. in [15] propose to use a registration algorithm
for generating realistic-looking images with controllable cardiac motion. After
fusing a surface model of the heart into real cardiac images, the heart geometry
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is adapted according to a predefined motion model. Along the same direction,
in recent work by Duchateau et al. [16], an optimized pipeline is proposed for
reducing the registration errors and improving the model-to-image adaptation,
therefore generating more realistic images. Similarly, Zhou et al. in [17] introduce
a multi-modality pipeline to generate cine CMR images, tagged CMR, and echocar-
diography sequences from the same virtual patient. With the aim of augmenting
data, similar work was done by Acero et al. in [18], who use a heart statistical
model of deformation to generate similar looking examples of images from a cardiac
MRI database through altering the anatomy. While the generated images using
the above-mentioned approaches are realistic in terms of the underlying anatomy,
they depend on the availability of real cardiac images. Combining the controllable
anatomical model with the imaging features has gained more attention in recent
years. Abbasi-Sureshjani et al. in [19] and Amirrajab et al. in [20] propose to
integrate the anatomical information of the XCAT phantoms [7] with modality-
specific appearance of real data to synthesize data for creating a virtual database
of realistic CMR images with ground truth labels. Although the anatomical
variability can be created using the heart model, new image appearances can not
be generated. Furthermore, the gray values of the images are not governed by the
underlying physics of MRI and controlling image contrast at the tissue level is not
yet feasible.

2.1.4 Motivation and Contribution

In this work, we develop a flexible framework suitable for generating a database
of heterogeneous cardiac MR images that present variations in acquisition pa-
rameters, tissue properties, image contrasts, and anatomical representation. The
proposed framework is tailored towards generating a plethora of realistic-looking
images with corresponding ground truth labels. We build upon and advance
previous works in both areas of anatomical modeling and cardiac MR image simu-
lation. The simulation pipeline consists of three main elements: i) a parameterized
anatomical model based on an improved version of the XCAT phantoms; ii) a set of
controllable tissue parameters for more than 10 tissue types within various organs;
iii) an optimized CMR simulation model to generate images with variable contrast.
We save the output of the simulation together with multi-tissue ground truth labels
in the NIfTi file format with proper metadata of acquisition parameters.

The main contributions of this chapter can be summarized as follows:

• We enhance the heart model by adding patient-specific detailed structures
for the trabeculation anatomy of the left and right ventricles. Moreover, we
make use of available anatomical parameters in the XCAT phantom to create
virtual subjects with variable organ size, geometry, volume and location.

• We increase the realism of the CMR image simulation by assigning numerous
tissue properties to various organs that are visible in the imaging field of
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view. We utilize physics-based analytical solutions for fast MR contrast
computation with controllable acquisition parameters.

• We create a population of virtual patients (25-30 cardiac phases each) with
different anatomical characteristics for cine cardiac MR image simulation
for functional analysis and make the database with ground truth labels
publicly available to the medical imaging research community upon request
via https://osf.io/bkzhm/

An initial database of CMR images was simulated on virtual patients using
the early version of our framework for the recent work of Al Khalil et al. in [21].
We showed that such a heterogeneous database of images with variation in both
anatomy and appearance can be used for pre-training a deep learning cardiac
segmentation model that can generalize better to the variability of real cardiac
data and experiments showed that similar performance can be achieved when
replacing up to 80% of the real data with simulated data. The initial results
indicate the usefulness of a simulated database of CMR images for transfer learning
in medical imaging. In this work, we made substantial improvements to our
simulation framework by 1) optimizing sequence parameters and image contrast,
2) improving the anatomical model by incorporating patient-specific details of the
heart trabeculation, 3) improving the image realism by increasing the number of
tissue properties used for simulation, and 4) by modeling the partial volume effects
using sampling and filtering in the k-space. Here, we present our framework for
cardiac MR image simulation and provide detailed explanation of each module.
In addition, we evaluate the usefulness of simulated data in the context of data
augmentation for training a neural network for cardiac cavity segmentation. We
show that with improved image realism we can directly add the newly simulated
data to the real image and demonstrate the benefits of data augmentation and
data replacement using the simulated images in this study, which was not possible
before due to limited image realism.

The structure of the chapter is as follows. We give a brief overview of the
XCAT anatomical phantom in section 2.2.1, the explanation of our approach
for incorporating more anatomical details into the XCAT heart model in section
2.2.1, the introduction of the anatomical parameters for creating virtual patients
in section 2.2.1, the description of steps involved for cardiac MR simulation in
section 2.2.2, the experimental design for evaluating the generated data in a deep-
learning setup in section 2.2.3, and qualitative and quantitative analysis of the
results in sections 2.3.1 and 2.3.2, followed by discussion and conclusion in 2.4 and
2.5, respectively.

https://osf.io/bkzhm/
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2.2 Proposed Framework

2.2.1 Virtual Subjects

The XCAT Phantom

The 4D eXtended CArdiac and Torso phantom (XCAT) [7] is used as the basis
for creating virtual patients for image simulation. The anatomies in the XCAT
phantom are based on segmented patient data, modelled as Non-Uniform Rational
B-Splines (NURBS) surfaces to accurately capture each structure in the body.
Defined anatomies using NURBS surfaces provide a realistic representation of a
patient with great flexibility to alter and create models with geometrical deforma-
tions. For accurately modeling the regional myocardial contracting and twisting
motion of the left and right ventricles, the cardiac motion model was improved
using the analysis of tagged CMR images [22]. The analysis of the tagged MRI
data resulted in a comprehensive motion model that can produce accurate heart
geometries at any given time point during the cardiac cycle and represent the
complex geometrical deformation of the beating heart. Note that the motion of
the XCAT heart includes the shortening along the long axis of the heart that
accounts for the through-plane motion during image simulation.

These features make the XCAT a suitable source for creating times series of
varying models for simulating the dynamics of the heart. However, the anatom-
ical details of the trabeculae muscles are missing in the current version of the
XCAT phantom which hampers both the realism of the image simulation and the
performance of image-based assessment of cardiac function.

Inclusion of Myocardial Trabeculae in the XCAT Heart

Previous studies have explored the importance of the papillary muscles and trabec-
ulae anatomy in analyzing cardiac images. Their inclusion in the left ventricular
cavity or left myocardial volumes can have a considerable impact on the final
assessment of the cardiac function [23]. Therefore, from a simulation perspec-
tive, the construction of a detailed heart model that comprises the mentioned
substructures is crucial for quantitative analysis of the images. To model the
geometry of the trabeculae of the myocardium, we utilized open access ex-vivo
high-resolution 3D MRI data of normal human heart with 256 × 256 × 136 matrix
size and 0.4297 × 0.4297 × 1 mm3 voxel dimensions [24]. As shown in Figure 2.1,
the irregularity of the trabeculae muscular geometry was accurately segmented
from the images.

The spatial patterns of the tiny structures of the trabeculae anatomy were
accurately captured by manually segmenting the right and left ventricle of the
heart slice-by-slice using ITK-SNAP software [25]. It was then converted to a 3D
polygon mesh model, while preserving the details of the jagged-like structures, and
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transformed into the inner surfaces of the XCAT heart chambers. The alignment
was done for the end-diastolic phase of the heart and the motion model was applied
to the trabeculae mesh model to be altered smoothly during the cardiac cycle.
These steps can be seen in Figure 2.1.

Anatomical Parameters

To provide large quantities of varying anatomies in CMR image simulation, we
use the pre-defined XCAT parameters to create new subjects. We assign a specific
set of anatomical parameters for body size and heart geometry and location with
respect to neighboring organs. These parameters include body scaling in different
dimensions, orientation angles and translation of the heart within the torso, and
LV volumes at end diastole and end systole.

As shown in Figure 2.1 the parameters of the anatomy are modified to create
a new virtual patient. The XCAT program outputs a three-dimensional volume of
binary labels, shown with different colors, for a desired body area that is defined by
field of view, matrix size, and the voxel resolution. The voxelized XCAT anatomy
is shown for three orthogonal planes (axial, sagittal and coronal), as well as three
examples for changing the anatomical parameters of the axial view. We create an
isotropic 4D (3D + time) model for each virtual subject. The slices of the volume
are presented in the axial view, while the standard views for assessment of cardiac
function using MRI can be different. Since it is common to scan in short-axis view
of the heart, rotation and re-slicing is performed on the axial slices following the
recommendations provided in the CMR pocket guide [26]. The rotation angles are
obtained given the spatial location of the heart within the torso provided by the
XCAT metadata information. The generated subjects are used as the input for
our CMR image simulation pipeline described in the following section.
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2.2.2 Cardiac MR Image Simulation
An overview of the pipeline for simulating CMR images is provided in Figure
2.2. Firstly, MR properties are assigned to each tissue label in the high-resolution
voxelized XCAT anatomy (a). Given these parameters and the imaging settings,
image contrast is computed using the analytical MR signal model of the desired
pulse sequence (b). In c), the simulated contrast data is transformed to high-
resolution k-space data by applying a Fourier transformation followed by a sam-
pling operation (e.g. Cartesian sampling grid) to map the k-space data to a coarser
grid, given acquisition resolution. Thereafter in d), complex noise is calculated
based on the chosen signal-to-noise ratio to be added to the real and imaginary
parts of the complex-valued k-space data. Finally the reconstruction operation
is carried out to create the final image in e). For dynamic imaging of the heart
motion, the same operations from a-e are performed for each time frame of the
voxelized anatomy that includes changes in the heart geometry for one cardiac
cycle. The reconstructed 4D image data is saved in the NIfTi file format together
with the corresponding ground truth labels. In the following section the individual
steps of the pipeline are described in more detail.
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MR Tissue Properties

The voxelized anatomical models derived from the previous section needs to be
complemented with MR tissue properties (T) in Figure 2.2 a). It is important
to not only assign tissue properties to the heart tissue and blood, but also to the
surrounding organs. By adding tissue properties to the organs in the field of view,
we expect the simulated images to be a more realistic representation of real images.
The T1 and T2 relaxation times are obtained from literature and summarized in
Table 2.1. We found that there is a substantial diversity in the normal range of
values reported in the literature. Therefore, we combine the statistics to derive
one value for mean and one value for standard deviation for each tissue type and
use these values to generate random numbers for T1 and T2 relaxation times for
each specific virtual patient.

Table 2.1: MR tissue property statistics at 1.5 Tesla used for simulation.

Tissue type T1 (Mean ± Std) ms T2 (Mean ± Std) ms
Myocardium (977 ± 42)∗(1198.7 ± 30.3)∗∗ (55 ± 4)
Blood (1700 ± 63) (237 ± 50)
Liver (581 ± 35) (48 ± 7)
Kidney (1080 ± 42) (86 ± 5)
Spleen (1057 ± 42) (79 ± 15)
Body fat (338 ± 27) (11 ± 7)
Cartilage (1168 ± 18) (27 ± 3)
Skeletal muscle (1034 ± 87) (39 ± 5)
Bone (549 ± 52) (49 ± 8)
Lung (1000 ± 82) (40 ± 8)
Stomach (765 ± 75) (58 ± 24)
Intestine (343 ± 37) (58 ± 4)
References [27–35]

* inversion-recovery and ** saturation-recovery sequences

MR Contrast

Image contrast is one of the most important features of any imaging sequence in
MRI. It ultimately depends on the selection of the acquisition parameters such as
repetition time (TR), echo time (TE), and flip angle (α). The balanced steady-
state free precession (bSSFP) sequence has become the most widely used clinical
sequence for the cardiac functional assessment using the cine CMR because of
producing high contrast between blood and myocardium. We therefore use its
analytical solution to, given all parameters, compute the CMR image contrast
(Figure 2.2 b). The bSSFP signal (C) exhibits a relatively complicated contrast
composed of T1 and T2 relaxations that in the absence of any off-resonance is
given as follows [36]:
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C =
PD0

√
E2(1 − E1)sinα

1 − (E1 − E2)cosα − E1E2
(2.1)

Where E1,2 = exp(− T R
T1,2

) and the echo time in the balanced sequence is set to
TE = T R

2 that is represented as an extra weighting of the signal (
√

E2).
Note that the simulated MR signal in Equation 2.1 contains the magnitude

information under the assumption that the transversal magnetization will not
dephase between RF pulses in the ideal cases hence there will be zero or negligible
phase accumulation. In the presence of magnetic field inhomogeneity, RF coil
sensitivity, tissue susceptibility, motion, diffusion and any other sources of off-
resonance, the signal formula should be modified to account for simulation of the
phase information [37].

K-space Acquisition and Sampling

MR contrast computed on the high-resolution (HR) input model is transformed
to HR complex k-space data as follows:

A = F(C) (2.2)

Here F(.) is the Fast Fourier Transformation operator for transferring the HR
simulated contrast to the HR simulated k-space data that has complex values (A).
This data is then sampled to a desired (lower) resolution matrix using a sampling
operator (S) given the in-plane (∆x, ∆y) acquisition resolution.

The field of view of the simulation is dictated by the size of the input voxelized
model. That causes the space between the sampling points at different spatial
frequencies to be fixed, given the equation ∆kx, y = 1/FOVx,y. The maximum
spatial frequency is therefore derived based on the acquisition resolution given
FOVkx,ky = 1/∆x, y. This is the cut-off for the spatial frequency defining the
extent to which we sample the k-space data (Figure 2.2 c). In order to avoid
ringing artifact due to sharp truncation in the frequency domain, we apply a
Tukey window with α = 0.5 which results in smoother reconstructed images.

Noise Addition

Based on the signal-to-noise (SNR) ratio defined by the imaging parameters, a
Gaussian complex noise is generated. We add this noise to the real and imaginary
part of the simulated k-space data (S). The amplitude of the noise signal in the
final image depends on the ratio of the magnitude of the simulated signal and the
noise standard deviation. It is evaluated by SNR = C(ROI)/nstd, where C(ROI)
is the mean value of the simulated contrast at the region of interest (around the
heart) and nstd is the standard deviation of the Gaussian distribution, from which
random samples are generated. The contrast C depends on the tissue-specific and
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sequence-specific parameters and is calculated from noise-free k-space data. Given
a desired SNR level per simulation, the noise standard deviation is obtained and
used to generate a noise complex data (Noise(nstd)) that is added to k-space in
Fourier domain. For calculating SNR with the given equation, we assume single-
coil data acquisition. As a result of noise averaging, adding extra receiver coils
would lead to images with improved SNR. As shown in Figure 2.2 d), the noisy
k-space data at acquisition resolution (N ) is computed as:

N = S + Noise(nstd) (2.3)

Reconstruction

The high-resolution input is considered to account for the continuous nature of the
underlying anatomy in the real-world scenario. The final image is reconstructed
by performing inverse Fourier transformation R = F−1(N ) after adding complex
noise (Figure 2.2 e). The simulated images are re-sampled to a uniform grid (e.g.
256×256×13) and the intensity value for the whole image is scaled to the interval
of [0−4095], accounting for a 12-bit digital value of the images. Subsequently, the
images are saved together with the proper metadata information, making them
easily visualizable using standard image viewing software, such as ITK-SNAP and
ImageJ [25,38]. The corresponding ground truth binary labels for all of the tissue
types in the simulation are provided alongside the images.

2.2.3 Usefulness of the Simulated Data
We evaluate the usefulness of the simulated CMR images in the context of training
a deep convolutional neural network for the task of cardiac cavity segmentation.
We investigate three different scenarios of utilizing simulated data, which include:
1) exploring the performance of a segmentation model, trained only using simu-
lated images, on real MR test images, 2) assessing the usability of simulated images
as a data augmentation method, and 3) analyzing segmentation performance
retention when real data is reduced during training, while the number of simulated
data remains the same.

Real Data

We deploy all networks on images acquired from the Automated Cardiac Diagnosis
Challenge (ACDC) challenge1 [39]. The ACDC data-set includes end-systolic (ES)
and end-diastolic (ED) images acquired from 100 patients, containing both normal
and pathological subjects. Images are acquired by two scanners with different
magnetic field strengths and contain expert annotations for left ventricle (LV),
right ventricle (RV) blood pool, as well as left ventricular myocardium (MYO).

1ACDC data can be found at https://www.creatis.insa-lyon.fr/Challenge/acdc/

https://www.creatis.insa-lyon.fr/Challenge/acdc/
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Out of the available 100 subjects (200 ED and ES MR images), we reserve 90 (180
MR images) for training and 10 (20 MR images) for testing.

Segmentation Network and Training

We adopt a 3D nnU-Net [40] model for a a multi-class segmentation task with
several modifications to improve the adaptation from simulated to real MR images
during test time. The real cardiac MR images of the ACDC challenge have different
in-plane spatial resolution, matrix size, and slice thickness. It is a necessary
practice to harmonize that for training a deep-learning segmentation algorithm.
All real images used during training and testing are re-sampled to the in-plane
resolution of 1.25 × 1.25mm2 and cropped around the heart area to the size of
128 × 128 pixels while keeping the original slice thickness and number of slices.
However, to ensure more variation in the FOV and vary the size of the heart
in simulated data, we apply a range of different resolutions when resampling the
simulated images. We normalize input images at both the training and inference
time to an intensity range from [0,1] using a 99th percentile-based approach.
During training, we augment the data on-the-fly by utilizing random horizontal
and vertical flips (p = 0.5), random rotation by integer multiples of π

2 (p = 0.5),
scaling (scale factor s ∈ [0.85,1.25], p = 0.3) and random translations (p = 0.3),
gamma and brightness transformation (p = 0.6), as well as elastic transformations
(p = 0.3).

At inference time, we apply in-plane resampling, center-cropping and percentile-
based normalization on the real images. We additionally apply histogram matching
to match the intensity distribution of real images to that of simulated images
used during training, using a landmark-based histogram standardization approach
described in [41]. Moreover, we apply total variation (TV) denoising on real
images, which removes high frequency noise and textural features, but retains
sharp edges and outlines of larger tissues. This procedure reduces the bias of the
trained network towards tissue texture, which is difficult to realistically simulate.
All images are filtered using a strength parameter α = 15, which was visually
determined to smooth out the texture, while retaining the cavity shape.

Experiments

We explore the usability of simulated data for cardiac cavity segmentation by
performing three experiments that outline different aspects of simulated images.
To compare the performance of each model, we calculate the Dice similarity metric
and Hausdorff Distance (HD) on all slices of each subject in the test set.

Experiment 1: Performance of the Simulated model;
By employing a training and testing procedure described in Section 2.2.3, we
first train two segmentation models (Simulated 1 and Simulated 2) using
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a total of 200 simulated volumes (ED and ES) each for subjects with normal
and abnormally thick myocardium, respectively. We create XCAT subjects with
thickened myocardium by modifying the NURBS surfaces for the left ventricle. We
evaluate the model on 20 ED and ES volumes extracted from the ACDC test set,
where all slices are considered during evaluation. We compare the performance
of this model to a model trained using real images from the ACDC training set,
which is our baseline. All models are evaluated using the Dice score and Hausdorff
distance.

Experiment 2: Augmentation using simulated data;
In this experiment, we evaluate the use of simulated data as an augmentation
method, whereby we wish to observe whether adding simulated data to the training
set of real images has the potential to improve the model’s generalization perfor-
mance and reduce over-fitting. The baseline model for this experiment is trained
with 180 ACDC (ED and ES) volumes, extensively augmented using geometric
and intensity transformations, as well as transformations affecting the quality of
images by adding (Gaussian) noise. The Augmented models Aug 1 and Aug 2
are trained by adding 200 simulated volumes (corresponding to Simulated 1 and
Simulated 2 data) to the same set of real images used for training the baseline
model. The evaluation of both models is performed on all slices of the test set.

Experiment 3: Real data reduction;
In the last experiment, we wish to evaluate the extent to which the simulated data
can compensate for the lack of real MR images during training, in scenarios where
annotated MR images are limited. Since limitation of expert-annotated data is
often a challenge for supervised deep learning algorithms, having the ability to
train well-performing models with the help of simulated data is of the utmost
importance during model development. To demonstrate this, we systematically
reduce the number of real images available during training, while retaining the
number of simulated images (200) and evaluate the models on the same set of 20
test volumes as before (all slices included).



2.3. Results 23

F
ra

m
es

x

y

R

S

R

S

Figure 2.3: Dynamic cine simulation for 25 frames across one cardiac cycle with
1 second period. Time profiles along x and y lines for simulated (S) and real (R)
images are shown. The Animated gif is available at https://bit.ly/3DcU7q3.

2.3 Results

2.3.1 Qualitative Analysis

Visual comparison of simulated CMR images using the original MRXCAT ap-
proach [8] and our proposed framework is shown in Figure 2.4. Both the underlying
anatomy and the image contrast have been improved, resulting in increased image
quality and realism. As can be observed from the zoom area around the heart,
inclusion of the small structures of the trabeculae anatomy in the myocardium has
made the XCAT heart more similar to the anatomy of the real human heart. This
modelled trabeculation has improved the realism of myocardium-to-blood borders
for left and right cavities compared to the previous simulation. Furthermore,
increasing the number of tissue types in the image simulation as well as assigning
relevant relaxation properties is beneficial to enhance image quality. Using low-
pass filtering for partial volume effects in the original MRXCAT approach gave
a rather simplified look to the images. By adding the sampling operation in the
pipeline we could better account for the effects of partial volume on the smoothness
and blurriness of the organ and tissue boundaries.

https://bit.ly/3DcU7q3
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Our framework can also take the time series of the XCAT models to perform
dynamic simulation for the cine CMR imaging study. As can be observed in the
movie version of Figure 2.3 (available at https://bit.ly/3DcU7q3) the papillary
and trabeculae structures inside the left and right ventricles are deformed accord-
ing to the motion model of the beating heart, which replicates the twisting of the
myocardium. The simulated heart motion resembles the real one shown next to it
and the time profile of simulated (S) and real (R) image along two perpendicular
directions (x; top-down and y; left-right) for all frames show good similarity in
terms of myocardial displacement.

Simulation Examples

Figure 2.4: Examples of simulation with improved image realism for apex, mid,
and base locations of the heart . The results for the original MRXCAT approach
and our framework is shown in first row and second row, respectively.

For each virtual subject we have a number of labels to which we assigned tissue
properties for image simulation. These input labels provide accurate information
about the underlying anatomy and can be utilized as ground truth labels of the
simulated images. Different labels (49 tissue types) are represented by different
colors in Figure 2.5. The heart-only label map with its different components is
shown in Figure 2.5. The combined version representing the heart as 3 simplified
classes may be more suitable for training a heart cavity segmentation network.

Generating diversified images with varying parameters can enrich the virtual
population. Within our framework, we made numerous parameters available to
alter the simulation characteristics. This additional flexibility yields the advantage
to perform arbitrary changes in the imaging settings or anatomical features. Two

https://bit.ly/3DcU7q3
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Ground Truth Labels

Figure 2.5: Ground truth labels of a simulated cardiac MR image. Full label
map with 49 separate tissues shown with different colors (left), the heart tissues
(middle), and simplified classes for heart cavity (right).

examples for male and female anatomies are shown in Figure 2.6. It also illus-
trates some examples of changing image characteristics by modifying the imaging
parameters such as flip angle, in-plane resolution, and SNR level. We can observe
the alternations on the anatomical features such as location of the heart within
torso and scaling of the whole body, as well as changes of the image appearance.
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Figure 2.7: The distribution of T1 and T2 relaxation times for tissue properties,
repetition time (TR), signal-to-noise ratio (SNR) and flip angle (FA) for sequence
parameters used for simulating subjects in the heterogeneous population.
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Using the proposed framework, we simulate a population of virtual patients
with varying anatomical and contrast characteristics, tissue properties and se-
quence parameters. The heart model of the virtual male is enhanced by adding
an additional layer of the heart trabeculae as explained in section 2.2.1, whereas
the virtual female only has the papillary muscles. Figure 2.7 shows the T1 and
T2 relaxation times, repetition time (TR), simulated signal-to-noise ratio (SNR)
and flip angle (FA) for each generated virtual subjects. For simulations in this
study, we use myocardial T1 values of 977 ± 42 ms, which is measured using
inversion-recovery techniques [27, 28]. However, saturation-recovery can provide
more accurate tissue quantification that can yield higher T1 values as discussed
in [42] and these are therefore included in Table 2.1. We observe that selecting
slightly higher/lower tissue property values for myocardium has a negligible effect
on the simulated image contrast. To visualize the range of anatomical variations,
Figure 2.8 depicts left ventricular (LV) volumes at end-diastolic (ED) and end-
systolic (ES) phases of the heart for the simulated subjects.

Figure 2.8: The distribution of the left ventricular (LV) volumes at end-diastolic
(ED) and end-systolic (ES) phases for simulated subjects.
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2.3.2 Quantitative Analysis

Experiment 1: Performance of the Simulated Models

Figure 6.3 showcases some of the predictions for mid-ventricular slices for the
segmentation models trained on simulated images only with normal (Simulated 1)
and thickened myocardium (Simulated 2), compared to the baseline model trained
using real images. The models are evaluated on all slices of testing subjects,
resulting in the overall Dice scores and HD scores shown in Figure 2.11. We
perform a two-tailed Wilcoxon signed-rank test for the two models with p < 0.01,
indicating statistical significance between the performance of the two models.
By visual observation, we can determine that the performance drop observed in
the Simulated 1 is largely due to thicker myocardium appearing in the test set,
especially with patients containing pathology. While tissue segmentation in the
presence of pathology is generally a challenge when evaluating any segmentation
approach, additional challenges stem from the nature of simulation, where most
simulated myocardial tissue is thinner due to exclusion of papillary muscles and
trabeculae. This also affects the performance of the model when it comes to LV
segmentation. To address this limitation, we simulate new subjects with thickened
myocardium to train the Simulated 2 model. This newly simulated data help
increasing the segmentation performance for thick myocardium present in the
testing data, as well as boosting the performance for LV and RV segmentation
as can be observed from Figure 2.11. A drop in segmentation performance in
comparison with the baseline can stem from the basal and apical slices and can
be linked to the complex anatomy of the heart for pathological cases, which is
a significant challenge for a network that exclusively learns from the appearance
and shape of simulated hearts. Additionally, the performance of the Simulated
models is drastically affected by changes in appearance and texture, despite our
attempts to minimize these effects through TV filtering. However, these results
suggest a strong potential of utilizing a cost-effective artificial data-set for training
neural networks that can perform on par with traditional approaches requiring
large annotated sets of real MR data.

Experiment 2: Augmentation using simulated data

Figure 2.11 depicts the performance of the Augmented models (Aug 1 and Aug
2) compared to the baseline trained without simulated images. We can observe
that both RV and LV segmentation performance improves with the addition of
simulated data, with the accuracy of MYO segmentation slightly reducing for
Aug 1 model. This is again the effect of thinner myocardial tissue in simulated
images in Aug 1, which hampers model performance in the presence of myocardial
thickening. To address this issue and improving the performance of the augmented
model on the pathological cases with thick myocardium we simulate subjects
with abnormally thick myocardium and add them to the training. We observe
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Figure 2.9: Comparison between a segmentation model trained on 180 real
images (baseline) and identical model trained completely on 200 simulated images
(simulated).

improved performance for the segmentation of the myocardium as well as right
and left ventricles in terms of Dice score and substantial reduction in the HD
score for Aug 2 model where subjects with thickened myocardium are simulated.
The obtained Dice and HD scores for segmentation using the Aug 1 and Aug
2 models are statistically significant with p < 0.05. Samples of slices where
augmentation with simulated data improved the performance can be observed
in the first three columns in Figure 2.10. The majority of visually observed
improvement in predictions is typically related to the RV segmentation perfor-
mance, but it is also notable for LV and myocardium segmentation, especially
when simulated images with thickened myocardium is added. We hypothesize
that adding simulated data to the model has reduced over-fitting and given more
emphasis to cavity shapes during training. Additionally, we find that simulating
subjects with thickened myocardium is important to improve the performance of
the model on the pathological cases present in the test set.

To further demonstrate the contribution of simulated pathological data to
the segmentation performance, we train an additional model augmented with a
combination of both Simulated 1 and Simulated 2 data. In total, we add 200
simulated volumes, where 50% of images belong to the Simulated 1 data-set, with
the other half extracted from Simulated 2 data. To avoid selection bias when
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choosing the 50% of total simulated data available, we perform a five-fold cross
validation experiment and randomly select 100 images per simulated set for each
fold. A model trained under such a setup performs better than the Aug 1 model,
whereby we observe a reduction in the number of outliers and improvement in HD
scores across all tissues, particularly the LV myocardium. We attribute this to the
presence of the Simulated 2 data, which we already show can tackle the appearance
of thickened myocardium (Aug 2 model). However, while better than Aug 1, this
model under-performs compared with Aug 2, indicating that Simulated 1 images
may not introduce enough variability beneficial for improving the segmentation
performance of ACDC data. However, this may not be the case for other data-
sets (such as those containing examples of healthy subjects only).
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Ground Truth 180R
(Baseline)

180R + 200(S1) 
(Augmented 1)

180R + 200(S2)
(Augmented 2)

50R 50R + 200(S1) 50R + 200(S2)

Figure 2.10: Comparison between the baseline segmentation model trained on
180 real images (180R), the augmented 1 model with 200 simulated 1 images (180R
+ 200(S1)), the augmented 2 model with 200 simulated 2 images (180R + 200(S2)),
reduced model trained with 50 real images (50R) and augmented version of that
with simulated 1 and 2 images (50R + 200(S1)) and (50R + 200(S2)). Results for
mid-ventricular, basal and apical slices of the heart are shown.
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Experiment 3: Real data reduction

The effect of reducing real data during training, where we try to imitate the
scenario where acquiring annotated real MR data is challenging, can be observed
in Figures 2.10 and 2.11. We reduce the number of real MR images available during
training to 100, 50 and 25 volumes only, while retaining 200 simulated images. We
compare the performance of such models to models trained with only a limited
amount of real MR volumes, without the addition of simulated data. As expected,
the performance of such models tends to drop for all tissues, with a significant
reduction in performance when only 50 and 25 real MR images are used during
training. However, if such limited data-sets are aided with simulated images, the
performance drop is less significant and in some cases the performance of the
augmented model is retained compared to the model trained with the maximum
amount of real MR volumes available (compare 180R with 100R+200S in Figure
2.11). In Figure 2.10, we showcase the most extreme improvements, which occur
for models trained with 50 real images only, where we observe the 50R model
struggling with the segmentation of the RV and producing false positive predictions
for the LV. These are successfully compensated by the addition of simulated images
during training.
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2.4 Discussion

In this chapter we propose a flexible framework for physics-based CMR image
simulation with the purpose of generating a heterogeneous population comprising
diversified virtual subjects. We improved the quality of the simulated images by
enhancing and optimizing the three main components: i) computerized human
anatomical model, ii) magnetic tissue properties, and iii) physics of MR image
formation.

Our proposed image simulation pipeline has separated modules that could
easily be adapted and replaced to account for more comprehensive experiments.
For instance, in the sampling module c, for the fast generation of CMR images,
uniform Cartesian sampling for the k-space data can be replaced by more advanced
acquisition trajectories. It should be noted that the reconstruction module needs
to be modified accordingly, and also the coil sensitivity map may be required
for parallel imaging. The analytical description of the MR signal was used for
fast generation of the imaging contrast. Alternatively, the signal model could
be replaced with the extended phase graph formulation [43] or full numerical
simulation of the MR signal using the JEMRIS simulator [44], at the cost of sub-
stantially increasing the complexity and computation time of the simulation. The
JEMRIS simulation approaches, based on numerically solving the Bloch equations,
is considered more suitable for investigating the effects of various pulse sequences
design on the spin system, while in the context of generating ample images for
deep-learning application, the effects of the parameters on the global contrast of
the final images is more relevant.

Similar to the MRXCAT approach [8], the contrast is governed by the analytical
solution of the Bloch equations at the steady state of the magnetization for the
bSSFP sequence. It was shown that bSSFP sequence is less sensitive to field
inhomogeneities when a short TR is used [36]. We use short TR and therefore
ignore the presence of any off-resonance effects, which in real world scenario might
be due to RF inhomogeneity, imperfect shimming, magnetic susceptibility, and
T2* effects. Moreover, the RF slice profile is assumed to be perfectly rectangular,
and no spin dephasing is present during the acquisition. Simulating imperfections
in MR scanner and designing different RF pulses require numerically solving
Bloch equations using software packages such as JEMRIS [44] and MRiLab [45]
which found to be extremely time consuming and unsuitable for image database
generation.

We consider variations in the sequence parameters (shown in Figure 2.7) to be
an import feature of our simulation pipeline that results in producing images with
different contrasts and appearances. We observe that different scanner vendors and
imaging centers use different sequence parameters to optimize the bSSFP contrast
hence they produce varying image appearances. This varying contrasts and imag-
ing features hamper the performance of DL segmentation network as discussed
in the M&Ms challenge [46]. We believe by altering sequence parameters we can
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generate images with diverse appearances to help development of generalizable DL
method that can robustly perform on heterogeneous data from different clinical
centers, imaging conditions and scanner vendors.

Images with variations in the noise level are also generated in this study and
the range of simulated SNR is experimentally identified by inspecting the images.
Note that complex noise is added to the complex k-space data to resemble a real
scenario where the noise is already present in the MR signal during the acquisition.
We found that applying filter to the k-space data and resampling to the grid after
reconstruction will change the final SNR. In agreement with what discussed in [47],
we found that SNR measurements using two region approaches (background noise
and region of interest) do not completely agree with the actual simulated SNR.
Our measurements of SNR based on two ROIs from the simulated images resulted
in overestimating the simulated SNR level. However, the absolute target SNR
value is not crucial here, rather variation in the SNR and the ability to change
the noise level is considered an important feature of our framework for generating
diversified images for the purpose of DL training.

We created a database of CMR images of virtual patients using the proposed
framework to aid the development of data-hungry deep-learning medical image
analysis methods. One application using the preliminary version of the framework
was demonstrated in [21]. The benefit of using the simulated images for training
a cardiac cavity segmentation model was investigated and it was shown that
pre-training a deep-learning based segmentation model generalizes better to the
inherent variability of real cardiac images.

In addition, we explored the application of the virtual CMR database in the
task of cardiac cavity segmentation using supervised deep learning. Our experi-
ments demonstrated that models trained with images simulated in this study solely
can already perform comparable cavity tissue (LV, RV and MYO) segmentation
in mid-ventricular slices to models trained with real MR images annotated by
medical experts. We further show that the use of simulated data can be considered
an addition to classical augmentation methods, which are typically limited in
producing tissue shapes and appearance different to existing data. We demonstrate
that simulated data can compensate for the lack of real data during training and be
of significant help in settings where data acquisition is challenging. This indicates
that artificial data generated through the proposed framework has the potential to
extend the variability of anatomical and contrast features available in training data
and consequently, help the network generalize and adapt better to unseen data.
Of course, simulating a more realistic appearance and contrast, with significant
variation in shape and quality is of the utmost importance for achieving this.
The added benefit is the fact that through this framework we can simulate and
design a number of pulse sequences, generating simulated data representative of
the data available in test sets, which is typically costly and infeasible for typical
MR acquisition.
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2.4.1 Limitations and Future Work

We simulate single-coil acquisition scenario for fast generation of the images.
However, three-dimensional coil sensitivity maps can be simulated using the Biot-
Savart law as previously discussed in the MRXCAT [8]. The normalized sensitivity
map can be multiplied with the simulated contrast resulting in one image per coil.
Similarly, one could use the same multi-coil simulation setup inside our framework.
Note that the multi-coil acquisition scenario is more suited for reconstruction
purposes and optimization for parallel imaging. We noticed that the addition
of multiple coils will substantially increase the simulation time and complexity,
making our framework less suitable for generating substantial number of images.

Flowing blood, also known as in-flow effects, can change the blood-to-myocardium
contrast and has historically been a source of error in cardiac MR images. The
simulations in this work do not account for this effect due to the complexity of
computational modeling for the blood flow and time-consuming simulation proce-
dure, requiring careful considerations of RF pulse profile, velocity distributions,
and slice thickness. It is, however, possible to extend our framework with such
model for the purpose of flow quantification using phase contrast image simulation.

Major cardiac MR imaging artifacts such as respiratory motion and ECG-
mistriggering artifacts are not simulated in this study. These artifacts are one of
the primary sources of failure of deep-learning (DL) based segmentation models.
Recently the authors in [48] and [49] proposed k-space models of motion artifacts
for the purpose of making DL algorithms more robust to such artifacts. Partic-
ularly in [49] authors proposed a data augmentation strategy to simulate cardiac
ECG-mistriggering and breathing artifacts based on k-space data corruption. The
same approach can be used to simulate these artifacts on our database. Another
concurrent work in [50] showed that our framework can be extended for the appli-
cation of late gadolinium enhancement (LGE) simulation on a virtual subject with
myocardial infarction and included respiratory artifact in the simulation procedure.
Precisely, the LGE simulation is performed at various time points across one
respiratory cycle from the XCAT model and the data is combined in such a way
to resemble the slice-misalignment artifact. The authors investigate the effects of
such artifact on the electrophysiology modeling of the heart. Modeling relevant
artifacts in cardiac MR imaging and simulating subjects with respiratory motion
artifacts, ECG-mistriggering, and ghosting artifacts, as well as investigating their
impact on the segmentation remains to be explored in future work.

In attempts to simulate pathological cases in this study, we generate subjects
with thickened myocardium for hypertrophic cardiomyopathy by modifying the
NURBS surfaces of the XCAT heart model. We demonstrate that the addition
of these subjects with abnormally thick myocardium would substantially improve
the segmentation performance on pathological cases, achieving best overall score
for the Aug 2 model in Figure 2.11. However, the current model lacks subjects
with myocardial infarction (potentially thinned heart), congenital heart, and other
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cardiac diseases. Adding virtual subjects with such diseases would be of great
importance and interest for the research community. However, due to the complex
nature of the heart modeling for such patients, we believe this could be address
as future work. For instance, by anatomical modeling of congenital heart disease
in the XCAT phantom, one could use our framework to simulate corresponding
images.

We showed that the inclusion of the trabeculation anatomy in the male XCAT
subject increased the visual realism of the simulated images. However, the im-
pact of this addition on the segmentation results was not directly quantified in
the presented paper. A mix of female subjects without and male subjects with
trabeculation were simulated for the Simulated 1 data, whereas for the Simulated
2 data with thickened myocardium we only generated male subjects without the
addition of the trabeculation. The results of these experiments suggested that
even without the added trabeculation anatomy, the simulated images improved
the segmentation performance, and whether or not the addition would bring extra
benefits to the segmentation remained to be explored in future studies.

The presented framework was designed to provide simulation of realistic CMR
images for the cine study. Extension to other CMR modalities such as late
gadolinium enhancement and first-pass perfusion are considered as future research.
These additions to the framework could be of great interest for multi-modality
studies, especially for expanding the database to increase its applicability for
disease classification. We believe this work is a step towards our aim to establish a
unified framework for personalized multi-modal cardiac magnetic resonance image
simulation.

2.5 Conclusions

In this chapter, we proposed a flexible framework for realistic simulation of car-
diac magnetic resonance images with controllable anatomical features, MR tissue
properties, acquisition parameters, and image appearance. We generated a virtual
population of CMR images with ground truth labels using our proposed frame-
work and made it publicly available to aid development of deep-learning cardiac
image analysis algorithms. Furthermore, our usability experiments suggested
that augmentation with the simulated population can boost the segmentation
performance, and even retain the baseline performance when just 45% of the real
data is available.
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Abstract

Synthesis of a large set of high-quality medical images with variability in anatomi-
cal representation and image appearance has the potential to provide solutions for
tackling the scarcity of properly annotated data in medical image analysis research.
In this chapter, we propose a novel framework consisting of image segmentation
and synthesis based on mask-conditional GANs for generating high-fidelity and
diverse Cardiac Magnetic Resonance (CMR) images. The framework consists of
two modules: i) a segmentation module trained using a physics-based simulated
database of CMR images to provide multi-tissue labels on real CMR images,
and ii) a synthesis module trained using pairs of real CMR images and corre-
sponding multi-tissue labels, to translate input segmentation masks to realistic-
looking cardiac images. The anatomy of synthesized images is based on labels,
whereas the appearance is learned from the training images. We investigate
the effects of the number of tissue labels, quantity of training data, and multi-
vendor data on the quality of the synthesized images. Furthermore, we evaluate
the effectiveness and usability of the synthetic data for a downstream task of
training a deep-learning model for cardiac cavity segmentation in the scenarios
of data replacement and augmentation. The results of the replacement study
indicate that segmentation models trained with only synthetic data can achieve
comparable performance to the baseline model trained with real data, indicating
that the synthetic data captures the essential characteristics of its real counterpart.
Furthermore, we demonstrate that augmenting real with synthetic data during
training can significantly improve both the Dice score (maximum increase of 4%)
and Hausdorff Distance (maximum reduction of 40%) for cavity segmentation,
suggesting a good potential to aid in tackling medical data scarcity.
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3.1 Introduction

Medical image segmentation has seen significant progress in recent years thanks
to development of automated deep-learning (DL) methods [51,52]. Similarly, with
the emergence of deep generative modeling, the medical imaging community has
benefited from its solutions for various applications such as image reconstruction,
segmentation, registration, and particularly image synthesis [9, 53]. Generative
adversarial networks (GANs) demonstrate promising results in generating realistic
images for tackling medical data scarcity and patient privacy issues. Medical
image synthesis using conditional GANs conditioned on the tissue label map,
which tries to translate simplified segmentation mask to realistic image, can be
understood as the opposite of the image segmentation. This has a number of
important advantages: i) allowing control of the anatomical information (content)
of generated images by controlling the segmentation masks, ii) explicit alignment
with the nature of medical images in which anatomy features are separated from
the style and appearance produced by imaging modality , iii) ability for direct
usage of generated images for downstream supervised and unsupervised tasks.

In this chapter, we propose a cardiac magnetic resonance (CMR) image syn-
thesis framework for translating the anatomical information of a segmentation
mask to a realistic image. The framework is able to generate a diverse database
of CMR images with ground truth labels that can be used for any downstream
task. Preserving the semantic information (content) of the anatomy presented
in the segmentation mask is important when synthesizing data for training a DL
medical image segmentation model. Therefore, we propose to incorporate a specific
type of conditional GAN that takes segmentation masks as an extra input to
the generator architecture. The segmentation mask corresponding to the input
image is fed to each layer of the generator using a conditional normalization layer.
This is important for learning the textual features (style) of separate classes and
preventing information loss when passed through multiple convolutional layers.

The framework consists of two modules: i) an image segmentation module to
provide multi-tissue masks on real CMR images, trained using a physics-based
simulated database of CMR images with corresponding labels, and ii) a semantic
image synthesis module to translate input segmentation labels to realistic-looking
cardiac images, trained using pairs of real CMR images and corresponding labels.
The proposed framework works in a supervised manner, requiring real images with
paired multi-tissue segmentation masks. Lack of expert annotations for the cardiac
MR images poses another challenge for the adaptation of our method. However,
we alleviate this challenge by utilizing simulated cardiac MR images for training
a multi-tissue segmentation network that provides labels for organs visible in the
field of view, such as lung, abdominal organs, musculoskeletal and skin fat tissue.
We perform extensive experiments to analyze the effects of different elements of
the framework on the quality of the synthesized images, as well as evaluate the
effectiveness and usability of such data for training a supervised DL model for the
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clinical task of cardiac cavity segmentation.

Contributions
The contributions of the chapter are: 1) Proposing an optimized framework for
CMR image synthesis trained with pairs of real images and multi-tissue segmenta-
tion masks. The framework is comprised of two modules for image segmentation
and synthesis. The first module provides multi-tissue segmentation masks for real
images. The second module learns the translation from segmentation masks to
realistic images, while preserving the anatomical information captured by tissue
labels. 2) Proposing a simulation-based approach to provide data for training
the multi-tissue segmentation network in module 1), while avoiding the need for
pairs of real images and ground-truth multi-tissue masks. We leverage a virtual
database of simulated cardiac MR images with corresponding ground truth labels
derived from the XCAT phantom (a computerized human anatomical model). 3)
Providing detailed assessments of i) the consequences of using a small or large set
of segmentation labels, ii) the ability to train a segmentation network solely on
synthesized data, iii) the potential of network improvement by augmenting the
training set with synthesized data.

In the present chapter, we advance our preliminary works [19,20] substantially:
i) we utilize a more realistic database of simulated CMR images for training and
use an optimized multi-tissue segmentation model, which provides an enlarged set
of labels essential for high-quality synthesis. Furthermore, we experiment with
the number of tissue types within the multi-tissue segmentation mask and choose
a different combination of tissue classes compared to the previous work; ii) we
employ a multi-vendor database of real CMR images to demonstrate the ability of
the generator to learn the vendor-specific appearance of the images, without using
the style encoder network used in the previous works; iii) we provide a detailed
explanation of the network architectures, experiments and evaluation metrics to
assess the quality; iv) We provide a detailed assessment of both the image-quality of
the synthesized images and the effectiveness and usability of the generated data for
two scenarios: 1) training a heart cavity segmentation network completely using
synthetic data to evaluate whether we can achieve the same performance when
we utilize the same amount of real data; 2) augmenting real data with addition of
synthetic data to boost the performance; v) A data reduction experiment is carried
out where the number of images for training the image synthesis network is reduced
to analyze its effects on the quality of the synthesized images. Additionally, a
human visual study is performed for qualitative assessment of image realism.
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3.2 Related Work

In this section we briefly highlight some of the recent works in the area of condi-
tional and unconditional image synthesis with emphasis on medical applications.
Comprehensive overviews of the generative adversarial networks in medical imag-
ing can be found in [9], [53] and [10].

3.2.1 Generative Adversarial Networks

Generative adversarial networks (GANs) aim to learn the underlying process of
data generation by forcing the generator to produce fake samples that are indis-
tinguishable from real images [2]. Image synthesis using GANs has gained major
attention thanks to the adversarial strategy for training the generator to synthesize
images from a random noise vector. Deep convolutional GAN [54] is a variant
for unsupervised learning of image representations that uses convolutional neural
networks in the architecture of the generator and discriminator. Such a model has
been adopted for unconditional medical image synthesis for various applications
such as synthesizing CT lung nodules [55], CT liver and brain lesions [56,57], MRI
brain [58], and skin lesion [59]. Another methodology called progressive growing
of GANs [60] is used for synthesizing high-resolution retina fundus and brain MRI
data [61]. All of the mentioned work is categorized under the unconditional image
synthesis domain, in the sense that a random noise vector is fed to the generator,
with no other information for controlling the generation procedure.

3.2.2 Conditional Image Synthesis

Conditional image synthesis, on the other hand, relies on using different types of
auxiliary information for guiding the generator to produce results, given an input
condition [62]. Among the first works to investigate conditional GANs for the
problem of image-to-image translation is pix2pix by [63], which demonstrates a
general-purpose approach for synthesizing realistic photos from label maps, edge
maps, or black and white images. The framework is supervised in the sense that
it needs pairs of input-output images from two domains for training. The input
image from the first domain is fed to the generator that adopts a U-Net based
architecture for translation to the target domain via adversarial loss. In contrast
to L1 loss that leads to blurry images, adversarial loss proves to be more effective in
generating high-quality images with fine-grain details. The key success lies behind
the ability of the discriminator to learn a trainable loss function to capture the
subtle differences between real and fake images. The photo realism and resolution
of the pix2pix results have further improved through utilizing a course-to-fine
generator with residual blocks and a multi-scale discriminator in the pix2pixHD
framework proposed by [64]. Other approaches for unsupervised, unpaired image-
to-image translation are used in cases when paired training data from two domains
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is not available [65–67]. Both paired and unpaired methods are successfully
employed in the medical domain for the application of cross modality image
synthesis - translating an image from one modality (CT) to another one (MR). MR
images are translated to CT images (and vice versa) of the brain for radiotherapy
treatment planing [68,69], as well as the heart for data augmentation [13,70].

In the present work, we are interested in translating multi-label segmentation
masks to realistic medical images, for the application of providing training data
for DL-based CMR image analysis. We aim to provide more control over the
underlying anatomy of the synthesized images while producing realistic data with
high-quality image appearance at the same time. Upon successful training of
this label-informed network, the segmentation mask can be manipulated during
the test time to generate a new image with altered anatomical characteristics.
Such a synthesized image with corresponding (altered) segmentation mask can
be used to relieve data scarcity by providing more labeled images for training an
analysis model. We analyse both the quality of the synthesized images and the
usability of the synthesized data for a clinical task of cardiac cavity segmentation.
Experiments are conducted to evaluate the effects of multi-tissue versus cavity-
tissue labels, multi-vendor data, and the number of training data on the realism of
the generated images. We further perform a small human visual study for scoring
the image quality, in addition to calculating the well-known quality metrics.

3.3 Method

An overview of the proposed framework is presented in Figure 3.1. Two consecutive
modules, operated for segmenting real cardiac MR images and for synthesizing
images, are the main building blocks of our framework. The segmentation module
is designed to provide the corresponding multi-tissue labels for the input images,
while the synthesis module utilizes such labels with paired images to learn the
translation from segmentation to realistic image appearance. Consequently, the
synthesis network can generate cardiac images based on the anatomy characterised
by the labels.

3.3.1 Image Segmentation Network

We adopt a U-Net architecture [71], completely trained using simulated CMR
images, for the task of multi-tissue image segmentation. Several modifications to
the original architecture are made to optimize the network, including utilization of
Leaky ReLU non-linearity and Batch normalization (BN) after each convolutional
layer for stabilizing the training, as well as dropout regularization with a rate
of 0.5 to avoid overfitting and improve the generalization. The network consists
of five down-sampling and up-sampling blocks, trained with a batch size of 32
2D simulated CMR images, for generating pixel-wise predictions for nine tissue
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Synthesis
2

Segmentation
1

1) Training with 
Simulated CMR Images

2) Segmentation of 
Real CMR Images

4) Synthesis of 
CMR Images Using 
Different Labels

3) Training with 
Real CMR Images

Input Output

Input Output

Figure 3.1: The proposed framework including multi-tissue image segmen-
tation and synthesis modules operating offline as follows: 1) training the
segmentation network using only simulated CMR images with ground truth labels
for nine tissue types; 2) segmenting real CMR images to provide corresponding
multi-tissue labels for each real image; 3) training the conditional image
generation network using the derived labels alongside with the real images to
learn the translation from labels to realistic images; 4) synthesizing, in turn,
images on different labels.

classes, including the background. We use a Focal Tversky loss from [72] for
training, optimized using Adam for stochastic gradient descent, with an initial
learning rate of 10−4. We apply early stopping when the learning rate drops
below 10−6 and train the network for a total of 350 epochs using 200 simulated
volumes for training.
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To alleviate the burden of obtaining real data with corresponding labels for
supervised training of the U-Net, we utilize a virtual population of simulated
cardiac MR images with accurate ground truth labels for training, as discussed
in section 3.4.1. The predicted multi-tissue segmentation masks are used for two
purposes: i) providing paired data for training the image synthesis network, and
ii) providing input labels for synthesizing new images using the trained generators.

3.3.2 Image Synthesis Network

Preserving the content information of the segmentation labels, which represents
the anatomy in the context of medical images, is crucial. Traditionally, this is
achieved by feeding the segmentation mask as the input of an encoder-decoder
architecture with skip connections, forming a U-Net generator [63, 64]. This
approach is sub-optimal for preserving the information of the binary segmen-
tation masks, and common (unconditional) normalization layers such as batch
normalization [73] and instance normalization [74] tend to wash away the semantic
information of the segmentation mask, as pointed out by [75]. On the contrary,
a conditional normalization layer, applied throughout the generator architecture,
takes the segmentation map as the condition to compute modulation parameters
for de-normalizing the activation in a semantic-preserving manner. A SPatially
Adaptive DE-normalization (SPADE) layer is therefore proposed by [75] to re-
place all the unconditional normalization layers to inject the information of the
segmentation map into each feature layer of the network. Conditioning the network
using SPADE layers was found to significantly improve the performance of image
synthesis compared to directly inputting the segmentation mask to the first layer
of the generator. Moreover, the generator can have a much lighter architecture
which makes it easier and more stable to train, requiring a fewer number of training
data.

Generator Architecture

The generator architecture, inspired by [75], is comprised of several SPADE resid-
ual blocks [76], followed by up-sampling layers to increase the spatial dimension
of the input activation. The semantic information of the segmentation mask is
injected into each residual block using a SPADE conditional normalization layer,
as shown in Figure 3.2.

Normalization Layers

Normalization layers play a crucial role in conditioning the generator on the
input label. The Batch normalization (BN) [73] layer has been recognized as an
effective component for stabilizing the training of modern deep neural networks
by normalizing the statistics of feature activation maps after each convolution
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followed by a non-linearity layer. The BN first normalizes features in the input
mini-batch to its mean and standard deviation, and then uses the scale and bias
values for applying the affine transformation. Given the input activation map with
the height of Hi and width of W i for a mini-batch size of N and Ci number of
channels (xi ∈ RN×Ci×Hi×W i) at the ith layer of the network, each individual
feature channel is normalized as follows:

BNγ,β(xi) = γ

(
xi − µc(xi)
σc(xi) + ϵ

)
+ β, (3.1)

where γ, β ∈ RC are unconditional scale and bias parameters learned during
the training. ϵ is small constant added to the denominator to avoid dividing by
zero, µc(xi), σc(xi) ∈ RC are the mean and standard deviation calculated across
mini-batch and spatial dimensions (n ∈ N, h ∈ Hi, w ∈ W i) for each feature
channel (c ∈ Ci) as follows:

µc(xi) = 1
NHiW i

N∑
n=1

Hi∑
h=1

W i∑
w=1

xi
n,c,h,w (3.2)

σc(xi) =

√√√√ 1
NHiW i

N∑
n=1

Hi∑
n=1

W i∑
w=1

(
xi

n,c,h,w − µc(xi)
)2

(3.3)

Different from BN, [75] propose to replace the modulation parameters with
spatially varying γi

c,h,w(si) and βi
c,h,w(si) dependent on the input segmentation

mask (si).
Following BN layer, the normalized activation is modulated with spatially-

dependent scaling and bias factors calculated using a shallow, two-layer modulation
convolutional network. Calculated γi

c,h,w(si) and βi
c,h,w(si) are multiplied and

added to the normalized activation function element-wise as follows:

SPADEc,γc,βc
(xi, si) = γi

c,h,w(si)
(

xi − µc(xi)
σc(xi) + ϵ

)
+ βi

c,h,w(si), (3.4)

3.3.3 Discriminator Architecture
During the conditional GAN training, the discriminator should also receive the
information about the conditional input. In our case, this is the anatomy rep-
resented in the segmentation mask. The corresponding ground truth label is
concatenated with both the real image and synthesized image (in a channel-wise
manner) to construct two pairs of real image-label and synthesized image-label
inputs. These two pairs of inputs are then passed to the discriminator in the
same batch (as suggested in [75]) to provide two separate predictions for the real
image and synthesized image conditioned on the label. Motivated by successful
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GAN frameworks, we adopt a multi-scale discriminator for high-resolution image
synthesis, to differentiate subtle differences between finer details presented in real
and synthesized images [64]. Two identical PatchGAN discriminators [63] with
four convolutional layers operate at two image scales that differ by a factor of 2
(see Figure 3.3).
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Figure 3.3: Multi-scale discriminator architectures including two discriminators,
1 and 2, having identical network structures but operate at two image scales, full
scale and down-sampled by a factor of 2.

3.3.4 Objective Function
In the supervised conditional GANs for translating semantic segmentation maps
to realistic images, the training set of paired images xj with corresponding maps sj

is available as (xj , sj) during training. The conditional distribution of real images
given the input segmentation maps is learned through alternate optimization of
the discriminator’s objective function LD and the generator’s objective function
LG. The so-called Hinge loss, introduced by [77] is given as:

LD = − E
(x,s)∼pdata(x,s)

[min(0, −1 + D(x, s))]

− E
s∼pdata(s),z∼p(z)

[min(0, −1 − D(G(s, z), s)] (3.5)

LG = − E
s∼pdata(s),z∼p(z)

D(G(s, z), s). (3.6)
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The GAN is trained via the following modified minmax game when using two
discriminators D1 and D2 operating at different image scales:

min
G

max
D1,D2

∑
k=1,2

LGAN (G, Dk) (3.7)

Inspired by many successful GANs for image synthesis [64,75,78], we employ an
enhanced version of the adversarial loss in Equation 3.7 that is improved using a
feature matching loss based on the discriminator for stabilizing the training of the
generator. Feature maps from multiple layers of the discriminator are extracted
for real and synthesized images for the feature matching loss calculated as follows:

LF M (G, Dk) = E
(x,s)∼pdata(x,s)

∑T
i=1

1
Ni

[∥∥∥D
(i)
k (s, x) − D

(i)
k (s, G(s, z))

∥∥∥
1

]
, (3.8)

where Di
k denotes the i-th layer of the discriminator Dk with the total number

of T layers and Ni elements in each layer.
Another well-established practice to overcome the training stability of the GAN

models and increase the quality of generated images is to employ a perceptual loss
for training the generator, in addition to the adversarial loss [79]. Training with
a perceptual loss achieves superior performance for various image transformation
tasks [80–82] and its importance has been acknowledged in the domain of medical
imaging, as it captures the perceptual quality of the small structures in images
[83,84].

Let ϕi(x) be a VGG19 pre-trained network for extracting feature maps from
its i-th layer when passing the image x, Mi be the number of elements, and N
be the total number of layers used to calculate the loss. The perceptual loss is
defined as the mean absolute error between feature representations of the real and
generated images, calculated as:

LP (G) =
N∑

i=1

1
Mi

∥∥∥ϕ(i)(x) − ϕ(i)(G(s, z))
∥∥∥

1
. (3.9)

The extracted features in the perceptual loss are based on the VGG19 pre-
trained model rather than the discriminator model in the feature matching loss,
therefore independent from discriminator training. The overall objective function,
composed of the weighted sum of the above mentioned components with hyper-
parameters of λ1 = 10 and λ2 = 10 for the contribution of each loss term, is
minimized during the training process:

min
G

((
max
D1,D2

∑
k=1,2

LGAN (G, Dk)
)

+ λ1
∑

k=1,2
LF M (G, Dk) + λ2LP (G)

)
. (3.10)
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3.4 Material and Experiments

Simulated and real CMR images are utilized for training the multi-tissue segmen-
tation and synthesis modules.

3.4.1 Simulated Cardiac MR Image Database

For training the supervised multi-tissue segmentation network of our first module,
we require images with labels. We leverage the results from our concurrent project
of cardiac MR image simulation and utilize our publicly available generated images
provided in the context of the openGTN project1 including 100 virtual subjects
with anatomical and contrast variations. The anatomies of virtual subjects are
derived from the 4D XCAT phantoms [7] and the images are simulated via a
physics-based simulation tool that implements the Bloch equations for cine study.
Each simulated image is provided with its corresponding ground truth label map
including all simulated organs and tissue types. We create the multi-tissue seg-
mentation map for the simulated images by combining labels for similar-looking
organs to have a simplified representation of anatomies visible in the field of view.
The segmentation map is comprised of separate labels for left and right ventricles,
myocardium, lung, skeletal muscle, skin fat and abdominal organs. An example
can be found in Figure 3.1.

3.4.2 Real Cardiac MR Image Database

For training the image synthesis network, the public dataset from the Multi-
Centre, Multi-Vendor & Multi-Disease (M&Ms) challenge2 [46] is used. The
M&Ms data include patients and healthy controls with hypertrophy and dilated
cardiomyopathy scanned at clinical centers in three different countries using MR
scanners of different vendors, referred to as vendor A1 (Philips scanner center
1), B2 (Siemens scanner center 2), B3 (Siemens scanner center 3). Throughout
our experiments, we employ the training subset of data from these two scanner
vendors and three clinical centers while the testing subset is completely unseen
during the synthesis experiments and it is only used for the final evaluation of
the segmentation performance. Expert annotations are only available for left and
ventricles, and myocardium, provided for 75 subjects of vendor A1, 50 subjects of
vendor B2 and 25 subjects of vendor B3, for end-diastolic (ED) and end-systolic
(ES) phases of the heart. We apply our trained multi-tissue segmentation network
on all data, but only utilize the data from the first two vendors (A1, B2) for
training our image synthesis model, while the last one (B3) is used for evaluation
of the synthesis quality of the generated images.

1Simulated data can be found at https://opengtn.eu/
2M&Ms data can be found at https://www.ub.edu/mnms/

https://opengtn.eu/
https://www.ub.edu/mnms/
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3.4.3 Data Preparation

Before training the segmentation network, all simulated CMR images are re-
sampled to 1.25 × 1.25mm across short-axis slices, cropped to the same size
of 256 × 256 and normalized with a mean of 0 and standard deviation of 1.
Standard data augmentations such as random scaling and rotations, mirroring and
horizontal/vertical flips are applied during training. Before training the synthesis
network, all real images are pre-processed by re-sampling them to 1.33 × 1.33 mm
in-plane resolution and taking a central crop of the images with 256 × 256 pixels.
The pixel intensity value of images is first clipped between 0 and 4000, assuming
12-bit value, and then normalized between the range of [−1, 1]. We only apply
random horizontal and vertical flips to images during training with 0.5 probability
of the image being flipped. All synthesis models for experiments in this chapter are
trained with the same training parameters using 3 NVIDIA TITAN Xp GPUs. To
have more accurate labels for three heart classes, we correct the raw predicted
labels of the first network by substituting the heart annotations provided by
the challenge. Furthermore, we remove the slices above basal and below apical
locations of the heart that do not contain any heart labels. Therefore, every slice
seen during synthesis contains at least one of the heart labels.

3.4.4 Analysis of the Framework

We conduct experiments to qualitatively (noted as Ql) and quantitatively (noted
as Qt) analyze different elements of the framework and their effects on the final
outcome:

Ql - Effects of multi-tissue vs. cavity-tissue labels: We evaluate the
need for utilizing the multi-tissue segmentation module with an ablated version of
our framework, where we train the image synthesis model with only cavity labels.
We compare the results with the network trained with full labels, with identical
training parameters.

Ql - Effects of Multi-vendor Data: We train two identical multi-tissue
generator using training images from the M@Ms challenge data-set [46], acquired
at different clinical centers by different scanner vendors, to explore the possibility
of learning a scanner-specific style of CMR images and the generator’s ability to
synthesize multiple appearance on a given set of labels. The generator trained on
data of vendor A1 and B2 are named GenA1 and GenB2, respectively. When the
labels from the other data is used for synthesis, we name this cross-vendor synthesis
between (e.g. GenA1oB2 is the result of synthesizing using GenA1 model on labels
from vendor B2 images). One example is shown in Figure 3.4.

Qt - Synthetic Image Quality Metrics:For quantitative assessment of the
synthesis quality, we compute structural similarity index (SSIM), peak signal-to-
noise ratio (PSNR), and normalized root mean squared error (NRMSE), between
the synthesized images using GenA1 and GenB2 models on the common labels
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of the B3 (n=50) and the corresponding real images, completely unseen during
training.

Ql, Qt - Effects of Amount of Data: We perform a data reduction
experiment to investigate the effect of the number of images used during the
training of the image synthesis module on the quality of the synthesized images
at inference time. We train different models using a fraction of real training data
and compare the quality of the generated images using multi-tissue or cavity-tissue
generators.

3.4.5 Human Visual Scoring of Synthetic Images

The quality and realism of the synthesized cardiac MR images are evaluated using
a visual scoring tool. We present to the evaluators the results of the cross-synthesis
experiment shown in Figure 3.4 which includes images of GenA1oB2 (n=30) and
GenB2oA1 (n=30) together with the real counterpart images of RealA1 (n=20)
and RealB2 (n=20) in a randomized order, and the evaluator is unaware whether
the displayed image is real or synthesized. To include sufficient heart coverage in
each displayed image, the mid ventricular slice of each patient is chosen.

One set of experiments with three phases and three questions with multiple
choices is designed. To avoid exhausting the evaluators by one time-consuming
experiment, the same experimental setup is repeated with different subsets of
images (maximum of 40 images for each round). Training phase includes 20 cardiac
MR images to get the evaluator familiarized with the scoring setup, questions, and
the types of images they can expect to score. Testing phases 1, 2, and 3 including
40, 40 and 20 cardiac MR images that serve as the main experiments for evaluating
and scoring the quality of the cardiac MR images. For each displayed image, we ask
three questions with multiple choice options: i) How do you evaluate the overall
quality of the image? ii) How do you evaluate the image realism with focus on the
heart? with a scoring on a scale of one to five, with one being worst score (very
poor quality) and five being best score (very good quality), and iii) How confident
are you that the image is real or synthesized? (Synthesized, Maybe synthesized,
Cannot tell, Maybe real, Real)

3.4.6 Utilization of Synthetic Data and Experimental De-
sign

We employ synthesized images for training a DL model to segment left and right
ventricular cavities and myocardium of the heart. The purpose of these experi-
ments is to investigate two aspects of the synthetic data: i) its ability to mimic
the distribution of the real training data and therefore, its effectiveness in training
a well-performing segmentation algorithm, which we refer to as a replacement
experiment and ii) its usability for augmentation purposes, where we quantify the
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Figure 3.4: Cross-synthesis between vendors A1 and B2. GenB2oA1 image is
synthesized using the model trained on vendor B2 data and evaluated on the multi-
tissue label derived from images of vendor A1, and vice versa for GenA1oB2.

effect of augmenting the real MR data during training with synthetic data, referred
to as an augmentation experiment.

To this end, we utilize the results of a cross-vendor experiment explained earlier,
which aims to transfer the appearance of the images acquired using the scanner
of one vendor on the anatomical masks derived from the subjects scanned using
another vendor. Additionally, we vary the heart shape during synthesis by applying
random elastic deformation and morphological dilation on heart masks (just before
image generation) to introduce anatomical variation in the synthetically generated
data. An animated GIF of applying multiple deformations on the heart labels
during synthesis is available at https://bit.ly/3juJE1v.

The baseline model is a 2D U-Net trained with a combination of real images
of vendor A1 and B2 (Real). We compare the performance of this model with
four identical ones trained with: i) only synthetic data with cavity-tissue labels

https://bit.ly/3juJE1v
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(Synth-Cavity), ii) only synthetic data with multi-tissue labels (Synth-Multi)
for the replacement experiment, iii) augmenting the real data with cavity-tissue
synthesis (Aug-Synth-Cavity), and vi) augmenting the real data with multi-
tissue synthesis (Aug-Synth-Multi) for the augmentation experiment.

All networks consist of six downsampling and upsampling convolutional blocks
with five max-pooling operations. Each convolutional block contains 3x3 kernel
convolutional layers, batch normalization and leaky ReLU activation function. We
additionally apply dropout regularization, with a rate of 0.5, after each concate-
nating operation in the up-sampling path of the network. To increase robust-
ness of the networks, we augment the training set by applying random vertical
and horizontal flips (p=0.5), random rotation by integer multiples of π

2 (p=0.5),
random translations (p=0.3) and mirroring (p=0.5), as well as random elastic
deformations (p=0.4). We do not apply any contrast transformations, to better
inspect the influence of synthetic data. All augmentation operations are applied
on the fly during training. At inference time, we only apply normalization and
in-plane re-sampling.

To train the network, we use a weighted sum of the categorical cross-entropy
and Dice loss. We use Adam for optimization, with an initial learning rate of
5 × 10−5 and a weight decay of 3 × e−5. During training, the learning rate is
reduced by a factor of 5 if the validation loss does not improve by at least 5×10−3

for 50 epochs. We apply early stopping on the validation set to avoid over-fitting
and select the model with the highest accuracy. As a post-processing step, we
perform connected component analysis on the predicted labels, where we remove
all but the largest connected component for each class and therefore, remove large
false positive predictions.

3.5 Results

3.5.1 Effects of Multi-Tissue vs. Cavity-Tissue Labels

Utilizing multi-tissue segmentation labels substantially improves the quality of
the synthesized images by providing more guidance to the generator. Figure 3.5
depicts the results of utilizing cavity-tissue compared with the use of multi-tissue
labels during synthesis, for two synthetic subjects for six slices covering the heart.
Although organ labels are not highly accurate for the case of multi-tissue labels, the
generator is able to synthesize realistic anatomies. Plausible organs are generated
around the heart when we use more labels for image synthesis. Furthermore,
we observe from consecutive slices of one subject (An animated GIF is available
at https://bit.ly/3fy0FGt ) that the generated anatomy is consistent in 3D,
making results suitable for 3D medical image analysis. Note that the synthesis
network is 2D, taking one slice at a time for image generation. Distortions in the
generated images for cavity-tissue are highlighted with yellow arrows.

https://bit.ly/3fy0FGt
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Figure 3.5: Visual comparison of synthesis results for two patients for the
cases of using multi-tissue labels and only cavity labels. The first column shows
the corresponding segmentation of the second column and the following columns
show image slices from basal location to the apex of the heart. Distorted parts
of anatomies in the latter ones are depicted with yellow arrows. The image
quality and volumetric consistency of the generated anatomy have improved in
the synthesized images with multi-tissue labels. An animated GIF version of two
examples is available at https://bit.ly/3fy0FGt

3.5.2 Effects of Multi-Vendor Data

Figure 3.6 shows the generation results on common labels derived from images
of vendor B3, for the generator trained with images of vendor A1 (GenA1oB3),
and the generator trained with images of vendor B2(GenB2oB3). From the visual
comparison of synthesis results, we observe that the main characteristics of the
training images are captured by the generators, allowing them to synthesize mul-
tiple appearances on a given label. Vendor-specific characterizations, such as the
darkness and blurriness of the images acquired from vendor A1, the sharpness of
the edges and the noisiness observed in images from vendor B2, and myocardium-
to-blood contrast, are learned by the generators and manifested in the synthesized
images.

https://bit.ly/3fy0FGt
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Figure 3.6: Synthesis results on labels derived from vendor B3 data for model
trained on data of vendor A1 (GenA1oB3) and the same model trained on data
of vendor B2 (GenB2oB3). The difference in the appearance of the synthesized
images demonstrates that the generator learns the vendor-specific features of the
training images.

3.5.3 Synthetic Image Quality Metrics and Effects of Amount
of Data

The images are generated on Cavity or Multi tissue labels using models trained
with combined data of vendor A1 (n=150) and B2 (n=100), GenA1B2, separate
data of vendor B2, GenB2, 50% of vendor B2 data, Gen50%B2, 25% of vendor B2
data, Gen25%B2, and 12% of vendor B2 data, Gen12%B2 as depicted in Figure
3.7. The results of the generator utilizing multi-tissue labels achieve the best
score for all metrics, suggesting that the better quality is achieved for multi-tissue
synthesis, despite the reduction in the training data. Interestingly, we observe that
the Multi-Gen12%B2 generator, which uses only 12 volumes for training, scores
significantly higher across all metrics than even the Cavity-GenA1B2 that uses all
250 real images during training, suggesting the benefit of multi-tissue labels when
limited data is available during synthesis.

Figure 3.8 depicts synthesis results on the same subjects generated by the
models trained with a fraction of the training data of vendor B2. We observe that
the synthesis quality of the multi-tissue generator is retained even when only 12%
of the data (12 volumes) is used for training, compared to the generator models
trained with the full available data-set. On the other hand, repeating the same
experiment on the generator trained with cavity-tissue labels produces images of
impaired quality and severe distortion.
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Figure 3.7: Quantitative evaluation metrics for comparing the quality of the
synthesized images using models trained with multi-tissue (Multi-) and cavity-
tissue (Cavity-) labels. Structural similarity index (a), peak signal to noise ratio (b)
and normalized root mean squared error (c) are calculated between real images and
corresponding synthesized counterparts. GenA1B2 and GenB2 indicate that the
synthesized data are generated by the generator trained on the combination of data
from vendor A1(n=150) B2(n=100) and only vendor B2 (n=100), respectively.
50%B2, 25%B2, and 12%B2 indicate models trained with fraction of the data
from vendor B2 (n=50, 25, 12). All models are tested on the unseen data of
vendor B3 (n=50).

Figure 3.8: The data reduction results for the case of multi-tissue and cavity-
tissue generators trained using the data from vendor B2 (center 2, n=100) and
tested on the unseen ground truth labels of B3 (center 3, n=50). The corresponding
real testing images are shown in the first row.
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3.5.4 Human Visual Scoring of Synthetic Data
Two independent raters completed the experiments. Evaluator 1 was an imaging
scientist with ample experience in CMR application and processing, who was
involved in this image synthesis research and has experience looking at GANs-
generated medical images, and evaluator 2 was a CMR clinical expert and con-
sultant cardiologist, who was not involved in this project. Figure 3.9 depicts the
scores of the evaluators for testing phases. The evaluation results for two sources of
the real (RealA1, RealB2) and two sources of the synthesized images (GenA1oB2,
GenB2oA1) are combined. The results for the total of 40 real and 60 synthesized
images are shown in this figure. The horizontal axis shows the level of the image
quality score, and the vertical axis shows the percentage of the total images rated
with that image quality score. e.g. around 70% of the synthetic data compared to
around 60% of real images are perceived as Good in terms of image realism with
focus on the heart (scored 4). Surprisingly, lower overall quality of the real images
is scored by the evaluator 1, having more real images with scores of 1 very poor and
2 poor, while same percentage scored 4 Good, and slightly more synthesized scored
3 Mediocre. The overall quality of both images are higher for the evaluator 2. From
the last question, the evaluator 1 is confident that only just 10% of the synthesized
images are “Synthesized”, around 55% "Maybe Synthesized" and the rest are either
unidentifiable or rated as "Maybe Real". For the evaluator 2, interestingly, the
majority of the synthesized cases are rated either "Cannot Tell" or "Maybe Real".
One conclusion to draw is that the synthesized images are on par with real images
in terms of visual quality, sometimes perceived as better quality, and they are
indistinguishable from the real counterparts even by experienced evaluators.

3.5.5 Utilization of Synthetic Data
We utilize synthetic CMR images with the aim to investigate the effectiveness and
utility of such data in training a deep-learning algorithm for segmentation, evalu-
ated by carrying out the replacement and Augmentation experiments. Hence, we
provide a quantitative, application-based evaluation of the usability of synthesized
images for a clinical task to segment myocardium (MYO), left ventricle (LV), and
right ventricle (RV). All models are tested on the same set of images, acquired
from two vendors and unseen during the training and development of the models.
We utilize standardized metrices for evaluation of segmentation performance in
the literature, namely the Dice coefficient and the Hausdorff Distance (HD) score.

We start by evaluating the replacement experiment, where we study the ex-
tent to which the data synthesized in this study can be used to train a model
for segmenting the heart cavity tissues in real CMR images. By running this
experiment, we can additionally quantify the realism of such data and possibly
identify points of improvement for future work. The results in this experiment
are shown for separated classes in Figure 3.10 a) and b). First, we observe that
both models trained with synthetic data exhibit a drop in performance compared
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Figure 3.9: The visual quality scoring results for two evaluators (1: Scientist,
2: CMR specialist). The outcome of all testing experiments for two sources of
the real (RealA1, RealB2) and two sources of the synthesized images (GenA1oB2,
GenB2oA1) are combined. This includes the total of 40 real and 50 synthesized
images. The scores correspond to; 1: very poor, 2: poor, 3: mediocre, 4: good,
and 5: very good quality.

to the model trained with real data (Real). This result was expected due to
the nature and characteristics of GAN-based conditional synthesis. However, we
see a consistent and significant improvement in the performance of the Synth-
Multi model compared to the Synth-Cavity model, where in some cases Synth-
Multi performs almost at par with the Real model, across both vendors and all
tissues. We hypothesize this is due to better image quality achieved through
synthesizing with multi-tissue labels, where tissue boundaries are much clearer,
with better contrast achieved between the tissues. Moreover, this indicates a better
resemblance of the Synth-Multi data features to the real data. Using the Synth-
Multi model, we notice a significant improvement in reducing the appearance of
outliers, but also improving the average Dice score across all patients. Most of
these outlier predictions tend to be located across basal and apical slices, which can
be partly attributed to the removal of unlabeled slices above the base and below
the apex of the heart during synthesis. We additionally observe false positive
predictions generally appearing across all slices using the Synth-Cavity model,
where tissue similar in shape, size or appearance to the heart cavity is often falsely
identified as a part of the heart. These errors are reduced by utilizing images of
better quality for training the Synth-Multi model. Being sensitive to false positive
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predictions, the HD scores for the Synth-Cavity model tend to be higher with a
higher percentage of outlier cases across all vendors and tissues.

The results for the augmentation experiment are shown in Figure 3.10 in rows
c) and d). This experiment shows that the addition of synthetic data to the
training set containing real data improves the segmentation performance across
both vendors and all tissues. This happens for both cases (Aug-Synth-Cavity
and Aug-Synth-Multi). However, adding Synth-Multi images to the training is
shown to be consistently better than Synth-Cavity both in terms of Dice score
and HD score, especially when it comes to reducing the variance and outliers of
the model performance. This is particularly evident in scores acquired across all
vendor B tissues, as well as in vendor A myocardium, which are significantly higher
compared to the Aug-Synth-Cavity model (p < 0.01 according to the Wilcoxon
signed-rank test). In fact, visual observations indicate that the Aug-Synth-Multi
model consistently yields segmentation improvements due to:

• the reduction of false positive and false negative predictions around the base
and apex of the heart, respectively;

• better segmentation of cases with a thicker myocardium, often appearing in
ES images, which we hypothesize is the influence of wider anatomical and
contrast variations introduced to the training through synthetic images;

• consistent improvements in the segmentation of the RV around the base of
the heart;

• better segmentation robustness in images with visible acquisition artefacts
and noise and better adaptation to cases with poor tissue contrast.

Moreover, models trained on real images only are prone to under-segmentation in
the occurrence of hyperintensities, which is largely alleviated with the addition of
synthetic data.

Some of the above-mentioned improvements are also present in the Aug-Synth-
Cavity model. However, the under- and over-segmentation of tissues in apical
and basal slices still remains a problem. Despite Synth-Cavity images being of
lower quality, we hypothesize that an improvement in performance compared
to the Real model is partly achieved as such images present harder examples
during the training procedure, thus improving network regularization and model
generalization. A detailed summary of the experiments is presented in Table 3.1.
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a)

b)

c)

d)

Figure 3.10: Quantitative usability evaluation of the synthesized data for two
experiments of data replacement (a,b) and data augmentation (c,d). Identical 2D
segmentation networks are trained using different training data combinations for
the task of cardiac segmentation. The baseline model, Real, is trained using all
available real training examples of vendor A1 and B2 (n=250); Synth-Cavity and
Synth-Multi are models trained completely using synthetic images when cavity-
tissue and multi-tissue labels are employed during the GANs training, respectively.
Aug-Synth-Cavity and Aug-Synth-Multi are models trained with augmented data
of real with cross-synthesis results. We apply geometrical deformations on heart
labels during synthesis to introduce more anatomical variations. The Dice
coefficient, Dice (higher better), and the Hausdorff distance (pixel), HD (lower
better) are reported for segmentation performance.
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Table 3.1: The performance of segmentation models for data replacement and
augmentation experiments

Vendor A Vendor B
Segmentation models Dice(LV) Dice(RV) Dice(Myo) HD(LV) HD(RV) HD(Myo) Dice(LV) Dice(RV) Dice(Myo) HD(LV) HD(RV) HD(Myo)

Real 0.932 0.894 0.847 8.32 12.44 10.70 0.911 0.896 0.860 8.75 9.89 11.78
Synth-Cavity 0.890 0.845 0.780 14.75 23.86 19.44 0.880 0.842 0.794 13.19 17.22 17.01
Synth-Multi 0.912 0.877 0.819 9.98 13.89 12.92 0.888 0.898 0.842 12.10 11.50 10.91
Aug-Synth-Cavity 0.938 0.907 0.869 6.99 10.72 8.48 0.926 0.926 0.871 8.85 9.51 11.20
Aug-Synth-Multi 0.945 0.920* 0.877* 5.83 9.22* 6.83* 0.932 0.929* 0.883* 5.24* 7.47* 8.85*
Numbers with * have p-value of p < 0.01 against the Real model according to the Wilcoxon signed-rank test and numbers with Bold text are the best scores.

3.5.6 Conditional GANs Comparison

We compare the proposed label conditional GANs model (based on the SPADE
normalization layers) with pix2pix [63] and pix2pixHD [64] models in terms of
synthesized image quality. All three models are trained with the same hyper-
parameters using the full data of vendor A1 and B2 with multi-tissue labels and
evaluated on unseen data from vendor B3. We can observe from the synthesis
results shown in Figure 3.11 that more anatomical distortions are produced by
pix2pix and pix2pixHD models (indicated by yellow arrows), especially in the heart
area. The SPADE-based generator can better preserve the content of the input
labels, resulting in more accurate generation of the heart. The calculated image
quality metrics (as described in 3.4.4 Synthetic Image Quality Metrics) are
shown in Figure 3.12, confirming the superiority of the SPADE-based generator,
strongly for the structural similarity index.

3.6 Discussion

3.6.1 Multi-Tissue vs. Cavity-Tissue Labels for Synthesis

For synthesizing realistic cardiac MR images we conduct experiments to investigate
the effects of using multi-tissue segmentation compared with using only cavity-
tissue labels during synthesis. The quality of the results achieved by the former
setup is significantly better, demonstrating superior image quality with fewer
distortions and artifacts. We observe substantial benefits of using a rough seg-
mentation mask for partitioning the input image into multi-tissue labels. Firstly,
despite the fact that our framework is two dimensional (2D), i.e. it takes 2D labels
as the input and produces 2D images, the global consistency for volumetric image
generation seems to be improved. Our results are consistent in the slice direction
and therefore suitable to generate data for 3D image analysis algorithms. Secondly,
we observe that the training time and stability is improved when training the
synthesis module with multi-tissue labels, resulting in a fewer number of epochs
required and a faster learning procedure. Finally, our experiments show that
even with as few as 12 real volumes accompanied with rough multi-tissue labels,
we can synthesize realistic images, despite the loss high-frequency details of small
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Real Pix2Pix Pix2PixHD Proposed (SPADE) 

Figure 3.11: Visual comparison between different generator models trained with
the same hyper-parameters using the combined data from vendor A1 and B2 and
evaluated on the unseen data from vendor B3. Yellow arrows indicate geometrical
distortions in the heart area for pix2pix [63] and pix2pixHD [64] models.

structures. From the visual assessment of the results we observe wrong anatomical
positioning in some synthesized images on cavity-tissue labels, i.e the cavity-tissue
generator is not able to correctly locate anatomical structures, such as lung and
abdominal organs surrounding the heart, as seen in Figure 3.8 second and forth
rows for the cavity-tissue generator. The correct heart position, with respect
to lung and other organs, is preserved for the multi-tissue generator, resulting in
synthesis of plausible anatomies. Note that we train our multi-tissue segmentation
model using simulated cardiac MRI data while one could replace that module with
another approach or manually segment the images.
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Figure 3.12: Quality metrics for quantitative evaluation of the results for the
proposed synthesis model in this study (SPADE), pix2pix [63] and pi2pixHD
[64] models. We compare the generated image quality based on a) structural
similarity index (higher better), b) peak signal to noise ratio (higher better) and
c) normalized root mean square error (lower better) between the generated and
real images for unseen data from vendor B3(n=50 subjects).

3.6.2 Synthesis Quality and the Amount of Data
We conduct the data reduction experiment to assess the effects of the number of
training images on the synthesis quality, comparing the results of generating on
multi-tissue and cavity-tissue labels. The quantitative metrics shown in Figure
3.7 suggest that the quality of the synthesized images on multi-tissue labels is
significantly better than synthesized images on cavity-tissue labels, increasing
the structural similarity index from 0.239 to 0.695 for the case of utilizing all
images from vendor A1 and B2 (total of 250 volumes). Gradually reducing the
training data causes drastic degradation in the quality of synthesized images on
cavity-tissue labels, whereas it does not severely affect the global quality of the
synthesized images on multi-tissue labels. For example, the quality of multi-tissue
generated images for the case of using only 12%B2 (n=12) constantly outperforms
the cavity-tissue generated ones using all 250 volumes of A1 and B2. This suggests
that there are significant advantages of putting effort into obtaining multiple tissue
labels when there is a limited amount of data available for training, as shown in
Figure 3.7. Furthermore, as seen in Figure 3.8, while in images obtained by the
cavity-tissue generator the anatomy of organs and structures are distorted, we
observe that only the high-resolution details of the image, such as the papillary
muscles and trabeculation of the heart are missing in images generated by the
multi-tissue generator for the cases of reducing the number of data during training.

3.6.3 On the Usefulness of the Synthetic Data
Despite recent attempts to synthesize realistic cardiac magnetic resonance images,
the analysis of how useful the generated data is for tackling a real world task
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remains largely unexplored. Our experiments show that there is a performance
drop when real data is completely replaced by synthesized data for the task of
cardiac cavity segmentation. This implies that some of the features of the real data
are not fully captured during synthesis. However, the addition of the synthetic
data can substantially improve the model performance, indicated by its benefits
for data augmentation. We observe a maximum increase of 4% for Dice and a
maximum reduction of 40% for HD in the presented experiments. The HD score
is significantly improved when real data is augmented with multi-tissue synthetic
data, suggested by the reduction in the outlier predictions and an overall improved
segmentation accuracy of tissue boundaries. Based on visual inspection of the
segmentation results, aiding the training with multi-tissue synthetic images yields
a better segmentation performance around the apex and base of the heart and more
accurate segmentation of the right ventricular cavity and myocardium. Our obser-
vations suggest that the improvements could be attributed to model robustness to
artefacts, noise and poor tissue contrast, but further investigation is needed, which
is planned for future work. Despite the fact that we observe better performance
when using synthetic multi-tissue data, the cavity-tissue images with lower visual
quality are still found to be helpful for data augmentation. This could imply that
by seeing somewhat more distorted generated images, the model can learn to deal
with some aspects of the data such as unclear tissue boundaries, blurriness, and
other imaging artifacts, which are unrepresented in the real training data. Similar
results have been reported in [85], where the segmentation performance can be
improved with visually low-quality generated cardiac MR images.

3.6.4 Limitations and Future Research

In this work, we synthesize cardiac MR images for cine study with imaging features
learned according to the acquisition protocol of the training data. However, multi-
modality image synthesis can be achieved by attaching an encoder network to
the generator for capturing the modality-specific style of images, e.g. image
appearance of the late gadolinium enhancement. As a result, cross-modality image
synthesis, defined as domain translation from cine to late enhanced cardiac MR
images (or to cardiac CT image), could potentially address the challenge of data
availability in a wider medical imaging context. Furthermore, with the ability
to manipulate labels for synthesizing a new image, it is possible to generate a
population of virtual subjects with heart diseases, as long as the disease can
be represented in the tissue mask. We show that the generated image quality
increases by utilizing multi-tissue labels even with noisy and inaccurate anatomy.
However, to synthesize highly detailed anatomies, one could work on the accuracy
of the multi-tissue segmentation network to provide more accurate labels for better
guidance of the synthesis network. In fact, the multi-tissue segmentation module
could be replaced with any available method to obtain detailed segmentation maps
of both the heart and the tissues surrounding the heart. To evaluate the usefulness
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and effectiveness of synthetic data, we perform experiments for the task of medical
image segmentation; however, other medical image analysis tasks can also benefit
from the achieved results in this work. Finally, more research should be focused
at addressing the synthesis of artifacts and other specific characteristics of MR
images that can potentially present a larger feature variability that DL-based
models, trained for different medical imaging analysis tasks, can learn from.

3.7 Conclusion

In this chapter, we propose a framework for cardiac MR image segmentation and
synthesis with the aim of generating high-quality images with informed anatomical
representation and learned imaging features. Leveraging Label-conditioned nor-
malization layers throughout the generator architecture allows for the preservation
of content information, while at the same time accurately transferring the image
characteristics of real data. Furthermore, one of the main findings of this work is
the importance of introducing detailed labels in the form of multi-tissue maps for
generation of highly realistic images with accurate anatomies even with a signif-
icantly smaller number of training data, compared to utilizing only cavity-tissue
labels during training. The effectiveness and usability of synthetic images for the
task of cardiac segmentation was evaluated, demonstrating that data augmentation
with synthetic data can substantially boost the segmentation performance in terms
of both Dice score (maximum increase of 4%) and Hausdorff Distance (maximum
reduction of 40%).
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Abstract

We propose a method for synthesizing cardiac MR images with plausible heart
pathologies and realistic appearances for the purpose of generating labeled data
for the application of supervised deep-learning (DL) training. The image synthesis
consists of label deformation and label-to-image translation tasks. The former
is achieved via latent space interpolation in a VAE model, while the latter is
accomplished via a label-conditional GAN model. We devise three approaches
for label manipulation in the latent space of the trained VAE model; i) intra-
subject synthesis aiming to interpolate the intermediate slices of a subject to
increase the through-plane resolution, ii) inter-subject synthesis aiming to
interpolate the geometry and appearance of intermediate images between two
dissimilar subjects acquired with different scanner vendors, and iii) pathology
synthesis aiming to synthesize a series of pseudo-pathological synthetic subjects
with characteristics of a desired heart disease. Furthermore, we propose to model
the relationship between 2D slices in the latent space of the VAE via the correlation
coefficient matrix to correlate random samples prior to reconstruction. This simple
yet effective approach results in generating 3D-consistent subjects from 2D slice-
by-slice generations. We demonstrate that such an approach could provide a
solution to diversify and enrich an available database of cardiac MR images and
to pave the way for the development of generalizable DL-based image analysis
algorithms. We quantitatively evaluate the quality of the synthesized data in an
augmentation scenario to achieve generalization and robustness to multi-vendor
and multi-disease data for image segmentation. Our code is available at https:
//github.com/sinaamirrajab/CardiacPathologySynthesis.

https://github.com/sinaamirrajab/CardiacPathologySynthesis
https://github.com/sinaamirrajab/CardiacPathologySynthesis
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4.1 Introduction

Deep generative modelling has gained attention in medical imaging research thanks
to its ability to generate highly realistic images that may alleviate medical data
scarcity [9]. The most successful family of generative models known as generative
adversarial networks (GANs) [2] and Variational Autoencoders (VAEs) [3] are
widely used for medical image synthesis [14, 53]. Many studies have proposed
generative models to synthesize realistic and diversified images for brain [86, 87]
and heart [13, 88] among other medical applications [83]. However, the generated
data are often unlabeled and therefore not suitable for training a supervised deep
learning algorithm, for instance, for medical image segmentation.

Despite the benefit of data augmentation and anonymization using synthetic
data for brain tumor segmentation [89,90], the application of synthesizing labelled
cardiac MRI data remained relatively under-explored with very limited recent
attempts to synthesize cardiac images [91]. Recent work by [92] and [20] inves-
tigates the effectiveness of using conditional GANs for translating ground truth
labels to realistic cardiac MR images that do not require manual segmentation and
can be used for training a supervised segmentation model. However, the images
are generated on a fixed set of input labels and therefore create similar heart
anatomies, very limited to available ground truth labels of the training data, and
more importantly, unable to synthesize subjects with cardiac pathology.

Contribution

We propose to break down the task of cardiac image synthesis into 1) learning
the deformation of anatomical content of the ground truth (GT) labels using
VAEs and 2) translating GT labels to realistic CMR images using conditional
GANs. We devise different strategies to deform labels in the latent space of
the VAE and generate various virtual subjects via three difference approaches,
namely i) intra-subject synthesis to improve the through-plane resolution and
generate intermediate short-axis slices within a given subject, ii) inter-subject
synthesis to generate intermediate heart geometries and appearance between two
dissimilar subjects scanned using two different scanner vendors, and iii) pathology
synthesis to generate virtual subjects with a target heart disease that affects the
heart geometry, e.g. synthesizing a pseudo-pathological subject with thickened
myocardium for hypertrophic cardiomyopathy. All mentioned approached are
accomplished via manipulation and interpolation in the latent space of our VAE
model trained on GT labels, as demonstrated in Figure 4.1. The synthetic subjects
in this study are labeled by design and therefore suitable for medical data aug-
mentation. Furthermore, we propose a method to generate 3D consistent volumes
of synthetic subjects by modelling the correlation between 2D slices in the latent
space. The relationship between the slices is captured via estimating the covariance
matrix calculated for all latent vectors across all slices. The estimated covariance
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matrix is used to correlate the elements of a randomly drawn sample in the latent
space just before feeding it to the decoder part of the VAE. This technique results
in a coherent sampling from the latent space and in turn reconstruction of more
consistent 3D volume by stacking 2D slices generated from the 2D model.

Figure 4.1: Three strategies to traverse and interpolate in the latent space to
perform label deformation using the trained VAE model. Each encoded slice of a
subject is represented as a dot in the low-dimensional latent space. The number
of slices is increased using cubic interpolation in the latent space for intra-subject
synthesis, and intermediate latent codes between two subjects (Subject 1 and 2)
are generated using linear interpolation for inter-subject synthesis, indicated as
dotted blue arrows. Assuming that all pathological subjects can be clustered
in a neighboring location of the latent space, the statistics are estimated to
draw a sample (pseudo-pathological subject) for pathology synthesis. Interpreting
between Subject 1 and the pseudo-pathological subject results in generating
subjects with pathological characteristics.

4.2 Methods

4.2.1 Image Synthesis Model

The synthesis model architecture includes a ResNet encoder [76] for extracting
the style of an input image and a label conditional decoder based on Spatially
Adaptive DE-normalization (SPADE) layers [75]. The SPADE layers preserve the
anatomical content of the GT labels. After successful training of the model with
pairs of real images and corresponding labels, the generator can translate GT
labels to realistic CMR images. To alter the heart anatomy of the synthesized
image, we can simply deform the labels. In the previous studies new subjects were
synthesized by applying simple transformations such as random elastic deforma-
tion, morphological dilation, and erosion on GT labels [93,94]. The effectiveness of
both elements of the synthesis model has been demonstrated in other recent work
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[93, 94] and the synthetic data generated using this approach, despite generating
unrealistic anatomies, boosted the performance of medical image analysis models
for tissue segmentation in cine and LGE cardiac MRI data. We utilize the same
synthesis network with default training parameters for this study and here we
focus on label deformation to generate heart pathology using a VAE model.

4.2.2 Label Deformation Model

We propose a DL-based approach using a VAE model to generate plausible anatom-
ical deformations via latent space manipulation to generate subjects with charac-
teristics of heart pathologies. The VAE model consists of an encoder and a decoder
network trained on the ground-truth label masks and tries to learn the underlying
geometrical characteristics of the heart present in the labels. The changes in heart
geometry can be associated with a specific type of disease. For instance, thickening
and thinning of the left ventricular myocardium can be an indicating factor of
hypertrophic and dilated cardiomyopathy, respectively. The goal here is to learn
the effects of these factors on the heart geometry presented in the GT labels and to
explore the latent space of the VAE to generate new labels with plausibly deformed
anatomies. Additionally, we model the characteristics of particular heart diseases
in the latent space and generate new samples with heart geometries that represent
these disease characteristics.

A convolutional VAE model is designed and trained on GT labels of the heart to
learn the underlying factors of different heart geometries presented in the database.
After training, we encode all data into the latent space using the encoder part of
the VAE and perform different operations to manipulate the learned features of the
data, in this case the heart geometry. For instance, once labels are encoded into
the latent space, we can traverse between two locations by simply interpolating
between two latent codes and performing reconstruction to generate new heart
geometries with intermediate anatomical shapes. These newly deformed labels are
used as an input of the label-conditional GANs for image synthesis.

4.2.3 Approaches to Generate New Subjects

We explore three different approaches to generate new subjects via label defor-
mation using our trained VAE model as shown in Figure 4.1. 1) Intra-subject
synthesis to increase the number of short-axis slices per subject via interpolation
between the latent codes of different slices of one subject. 2) Inter-subject
synthesis to create subjects with heart geometry and imaging characteristic of
between two different looking subjects acquired using two different scanner vendors
3) Pathology synthesis to generate pseudo pathological condition of a normal
subject to explore the progression of a heart disease and its possible effects on the
heart geometry.
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Intra- and Inter-subject Synthesis

For intra-subject synthesis, we wish to increase the through-plane resolution of
the SA slices for a subject. All slices (ranging between 6-13 slices per subject)
are first encoded into the corresponding latent vectors. The latent vectors are
then augmented by cubic interpolation to increase to 32 latent vectors, each
representing one slice, which are then reconstructed by the decoder network to
create labels for all 32 slices. All subjects will consist of 32 slices after the intra-
subject synthesis. Note that the first and last slices are kept and only intermediate
slices are interpolated.

Inter-subject synthesis aims to generate new examples with intermediate heart
anatomy and appearance between two dissimilar subjects. To this end, intra-
subject synthesis is first performed to equalize the number of SA slices for each
subject in the latent space. Therefore, each encoded subject has 32 latent vectors
associated with 32 interpolated slices. Then following the same procedure, inter-
mediate latent vectors associated with in-between heart geometries are created by
linear interpolation between the 32 latent vectors of the two encoded subjects. By
decoding these newly interpolated subjects using the decoder part of the VAE, the
heart geometry of one subject is morphed into the other one. Finally, the deformed
labels are fed to the synthesis model for synthesizing new subjects.

Figure 4.2: Pathology synthesis to generate a normal subject (NOR) with a
target pathology such as dilated cardiomyopathy (DCM), hypertrophic cardiomy-
opathy (HCM) and dilated right ventricle (RV), assuming that these diseases are
clustered in the latent space.
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Pathology Synthesis

Pathology synthesis is designed to generate subjects with informed characteristics
of a heart pathology and its effects on the geometry of the heart, given that the
pathology is manifested in the ground truth labels. The assumption here is that
subjects with a common pathological class have similar heart characteristics and
hence they are encoded to the same area in the latent space of the VAE trained
with them. Figure 4.2 depicts a schematic representation of the latent space
information of a normal subject (with a normal heart shape) and a number of
subjects with the same heart disease, having abnormal heart shapes, grouped in
the same location.

Suppose we wish to generate subjects with a target pathology, for instance with
characteristics of hypertrophic cardiomyopathy (HCM), potentially thickening of
the myocardium. Note that we want to preserve the identity of a normal subject
(NOR) and only generate disease characteristics such as thickening of the left
myocardium for HCM. To this end, assuming that the disease features can be
grouped to a neighboring location in the latent space, we encode all subjects
with the desired pathology into the latent space and estimate mean, standard
deviation, minimum, and maximum across all subjects for all interpolated slices;
[(µ, σ, min, max)]HCM . These statistics are calculated on the mean of the pos-
terior distribution which is the output of the encoder. The matrix size for these
parameters is (ns × nz), where ns is the number of interpolated slices (32 in our
case) and nz is the size of the latent vector. Note that we equalize the number
of slices for each subject via slice interpolation in the latent space. A sample
is drawn from a truncated normal distribution parameterized by these statistics,
which we call pseudo-pathology sample; xpHCM ∼TN [(µ, σ, min, max)]HCM . The
sample generated with statistics of all HCM subjects should potentially represent
the heart features of a HCM subject: abnormally thick myocardium. We expect to
observe an incremental progression of this anatomical feature on a normal heart
by performing linear interpolation between a NOR subject and a pseudo-HCM
sample.

Modelling 3D Consistency

To model the dependency of variables, the correlation between the dimensions of
the latent code for all pathological subjects is measured using the Kendall rank
correlation coefficient. The uncorrelated generated sample is then transformed in
the latent space according to the overall correlation coefficient (nz ×nz) estimated
from the training data to account for the relationship between elements of the
latent code. The elements of the latent vector are correlated using Cholesky
matrix decomposition as explained in the supplementary material. However, the
relationship between different slices of one subject has not yet been modelled. This
can lead to inconsistent heart geometries in the slice direction as a consequence of
slice-by-slice 2D synthesis.
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We propose a simple statistical approach to account for the relationship be-
tween slices in the latent space. The 2D VAE model is trained as normal while
we attempt to take advantage of the correlation between slices of a given subject
in the latent space and reconstruct a consistent 3D volume during the inference.
In pathology synthesis, we want to perform a linear interpolation between a NOR
subject (xNOR) and a random pseudo-pathological sample (xpHCM ). Although
different slices of the NOR subject are inherently correlated in the latent space, the
random sample does not contain any information about the relationship between
slices. To model this relationship, we estimate the correlation between slices of
the xNOR and construct the associated correlation coefficient matrix (ns × ns).
Given this matrix, we correlate the slices of the xpHCM using the Cholesky matrix
decomposition. The procedure is explained in more detail in the supplementary
material.

The interaction between elements of latent vectors as well as the relationship
between different slices is modelled to generate more realistic correlated samples in
the latent space. We found that both latent correlation matrix (nz × nz) and slice
correlation matrix (ns ×ns) are important for consistent synthesis. This simple yet
effective approach to sampling better respects the relationship between features
presented in the training data and results in generating 3D consistent subjects,
despite utilizing 2D models. A similar idea for modelling the distribution of 3D
brain MRI data via estimating the correlation in the latent space of a 2D slice
VAE has recently been explored in [95].

4.2.4 Data and Implementation

To examine the ability of our inter-subject method to perform cross-vendor and
cross-subject synthesis, we utilize CMR images from a pair of subjects scanned
using Siemens (vendor A) and Philips (vendor B) scanners provided by the M&Ms-
1 challenge [46]. The disease information for each patient is required for our
pathology synthesis experiment. For that purpose, we utilize ACDC challenge
data [39] including normal cases (NOR) and three disease classes (heart dilated car-
diomyopathy (DCM), hypertrophic cardiomyopathy (HCM), and abnormal right
ventricle (DRV)). All 150 M&Ms-1 and 100 ACDC subjects are resampled to
1.5 × 1.5mm in-plane resolution and cropped to 128 × 128 pixels around the heart
using the provided ground truth labels. Percentile-based intensity normalization
is applied as post-processing and the intensity range is mapped to the interval of
-1 and 1.

The input of the VAE model is a one-hot encoding version of the label map
including three channels for cardiac classes right ventricle, left ventricle, my-
ocardium, and background. The encoder part of the model includes four convolu-
tional blocks with three convolutional layers each followed by batch normalization
(BN) and LeakyReLU activation function. The encoded features are fed to four se-
quential fully connected layers to output the parameters of a Gaussian distribution
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Figure 4.3: Intra-subject synthesis for increasing the resolution of the short axis
cardiac MR image stack by interpolating in latent space of GT labels for slices of
the same subject and using them for synthesis. The original data contains around
8-10 slices per subject, and we create 32 slices using our intra-subject synthesis.

over the latent representation. The decoder part of the model is comprised of four
convolutional blocks each with one up-sampling layer followed by two convolutional
layers with BN and LeakyReLU. The last additional block of the decoder includes
one convolutional layer followed by BN and another convolution with four channel
outputs and Softmax activation function. The VAE model is trained using a
weighted combination of cross-entropy loss as the reconstruction loss and Kullback-
Leibler divergence (KLD) with a weighting factor of β for regularization of the
latent space capacity [96]. We experimentally identify the size of the latent vector
(nz = 16) and the weight of KLD (β = 15) by inspecting the quality of the label
reconstruction and the outcome of interpolation.

4.2.5 Usability of Synthetic Data

We generate synthetic data including five pathological versions of each NOR case
from ACDC data. The Synth HCM data is generated by interpolating, in the latent
space, between each NOR case and pseudo-pathological sample with characteristics
of HCM subjects. The same applies to generating Synth DCM data and Synth
RV data. Moreover, we interpolate between vendor A and vendor B subjects
from the M&Ms-1 challenge to generate Vendor AtoB synthetic data, which has
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Figure 4.4: Inter-subject synthesis for generating intermediate shapes between
two different heart geometries using linear interpolation between two subjects after
equalizing the number of slices. The generated new labels are used for image
synthesis.

characteristics of in-between vendor A and B data. To visualize the anatomical
variation of the synthesized data in comparison with the real data, we calculate
the end-diastolic (ED) and end-systolic (ES) volumes for the right ventricle and
left ventricle using the ground truth labels. As can be seen from Figure 4.5, there
is a considerable similarity between the distribution of the synthesized data and
the real data in terms of the calculated volumes.

We quantitatively evaluate the usefulness of the synthetic data for cardiac
segmentation in the presence of pathologies and domain shift in CMR image
databases. Publicly available data typically suffer from the limited number of
pathological cases, with rare diseases less likely to be represented well. Training
with such data leads to models that struggle with generalization and adaptation
to a wide variety of pathologies appearing among clinical cases. To tackle this, we
utilize the synthetic data from our proposed inter-subject and pathology synthesis
approaches in order to improve network generalization. To this end, we train four
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segmentation models with different combinations of real and synthesized data, to
produce segmentation maps of three major heart structures - the left ventricle
(LV), right ventricle (RV) blood pool and myocardium (MYO);

• 1) ACDC Real: a model trained with 200 ED and ES real images acquired
from the ACDC training set.

• 2) ACDC Real + Synth: a model trained with 200 real ED and ES images
from the ACDC training set and augmented with a total of 600 synthesized
pathological cases for HCM, DCM, and RV (200 ED and ES images per
pathology).

• 3) ACDC M&Ms Real: a model trained with 200 real ACDC images and
300 M&Ms-1 training images, acquired from vendors A and B (150 images
each which include both ED and ES phases).

• 4) ACDC M&Ms Real + Synth: a model trained with real images from
ACDC (200) and M&Ms-1 (300) training data augmented with a combina-
tion of 600 synthesized pathological cases (as utilized for the augmentation
of the ACDC Real + Synth model) and 1000 synthesized vendor AtoB
images.

To train the above segmentation models, we adapt a 2D nnU-Net [40] for a
multi-class segmentation task with several modifications for improving the gener-
alization and adaptation of the model to various data-sets used in this study, as
proposed in [97]. In particular, we replace the standard instance normalization
layers of the baseline nnU-Net with batch normalization and introduce heavier
data augmentation, besides the default transformations used within the nnU-
Net pipeline. These include image scaling (p = 0.3) with a scaling factor in
the range of [0.7-1.4], random rotations within ±60 degrees (p = 0.7), random
horizontal and vertical flips (p = 0.3) and elastic transformations (p = 0.3).
Moreover, we apply intensity transformations in the form of gamma correction
(p = 0.3) with the gamma factor ranging within [0.5-1.6], additive brightness
transformations (p = 0.3) with the brightness factor varying within [0.7-1.3],
multiplicative brightness (p = 0.3) with a mean of 0 and standard deviation of
0.3 and the addition of Gaussian noise (p = 0.2). During the pre-processing step,
all data is normalized to an intensity range of [0-1], resampled to 1.5 × 1.5mm
in-plane resolution and center-cropped to 128×128 pixels around the heart, which
is the same as the training patch size.

We use a combination of Dice and cross-entropy loss for training, optimized
using Adam for stochastic gradient descent, with an initial learning rate of 10−4

and a weight decay of 3e−5. During training, the learning rate is reduced by a
factor of 5 if the validation loss has not improved by at least 5 × 10−3 for 50
epochs. We train all models for a maximum of 1000 epochs, where early stopping
is applied when the learning rate drops below 10−6. Please note that we do not
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apply a cross-validation set-up during training and train all models once, utilizing
all available images on four NVIDIA Titan Xp GPUs.

At inference time, we resample all images to 1.5 × 1.5mm in-plane resolution
and crop them around the heart area. Since the test images are typically of a
larger field-of-view than those we use for training, and we cannot rely on the
availability of labels, we apply a heart region detection network, proposed in [94],
responsible for obtaining the bounding box encompassing the whole heart. Before
segmentation, the cropped images obtained using the predicted bounding boxes
are post-processed to be of the size 128×128 pixels and normalized to the intensity
range from 0 to 1. Finally, we perform a connected component analysis on the
predicted labels and remove all but the largest connected component per class.

We evaluate all four models on the hold-out data (completely unseen) from
the M&M-2 challenge with normal subjects (NOR) as well as various cardiac
pathologies including Dilated Left Ventricle (DLV), Hypertrophic Cardiomyopa-
thy (HCM), Congenital Arrhythmogenesis (ARR), Tetralogy of Fallot (FALL),
Interatrial Communication (CIA), Tricuspidal Regurgitation (TRI), and Dilated
Right Ventricle (DRV). This allows us to study the generalization capability of
both the baseline models (ACDC Real and ACDC M&Ms Real trained with real
images), as well as the models augmented with synthetic data generated in this
study, to a wide array of moderate and severe pathological cases, some of which
are not present in the training data. We report the segmentation performance in
terms of Dice score (Dice) and Hausdorff Distance (HD), which are typically used
as the main evaluation metrics in medical image segmentation challenges.

4.3 Results

4.3.1 Intra- and Inter-Subject Synthesis

Figure 4.3 shows the results for slice interpolation in the intra-subject synthesis
approach. The subject has originally nine slices and the synthesized version of the
subject includes 32 slices. The effects on the through-plane resolution on both the
image and on the ground truth labels can be observed from three orthogonal views
of the cardiac MR image. Traditional image-based interpolation between slices can
potentially result in a severe blurring effect due to the very large slice thickness
of short-axis cardiac images. Additionally, the segmentation label masks are not
properly preserved after image-based interpolation, especially the through-plane
smoothness of the masks may not be achieved.

An example of inter-subject synthesis is given in Figure 4.4. Note that the
morphing from one shape to another is only shown for one mid-ventricular slice.
The corresponding images are generated using the trained synthesis model.

To examine the ability of our method for cross-vendor and cross-subject syn-
thesis we choose pairs of subjects from Philips and Siemens subjects of M&Ms
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Figure 4.5: Distribution of calculated left and right ventricular volumes (LV and
RV respectively) using the ground truth labels for end-diastolic (ED) and end-
systolic (ES) phases of the heart for real and synthesized data. Vendor AtoB is the
synthetic data for inter-subject synthesis between the data from M&Ms-1 vendor
A and vendor B subjects. The synthetic data for pathology synthesis between
normal subjects (NOR) and the corresponding diseases such as Hypertrophic
cardiomyopathy (HCM), Dilated Cardiomyopathy (DCM), and Right Ventricle
Dilation (RV) are respectively denoted by Synth HCM, Synth DCM, and Synth
RV

database for inter-subject synthesis. We intend to show not only the morphing
between two heart geometries but also to demonstrate the transition from one
imaging characteristic to another one. Three examples for different levels of
similarities between the heart geometries and image appearances are shown in
Figure 4.6. Example 1: for two rather similar heart shapes, example 2: from
one heart with normal looking size to one with large left ventricle, and example
3: from another one with large left ventricle to one with large right ventricle. A
smooth transition between subjects from vendor A and another from vendor B can
be observed from the results.

4.3.2 Pathology Synthesis

The results for pathology synthesis with three target heart diseases namely DCM,
HCM, and DRV diseases are shown in Figure 4.7. The characteristic of the
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Figure 4.6: Inter-subject synthesis between three pairs of subjects chosen from
the subset of vendor A and vendor B data. Subjects with similar heart shapes are
chosen for example 2, whereas more dissimilar pairs for examples 1 and 3. Yet, a
smooth transition of the shape and appearance can also be observed for examples
1 and 3.

particular heart disease is linearly added to the latent code of a normal subject
(NOR). The heart shape characteristic of subjects with DCM, dilation of the left
ventricle, is progressively appearing on the NOR subject through interpolation
from left to right. The same is observed for thickening of the myocardium in the
case of NOR to HCM and dilation of the right ventricle for NOR to DRV. Note
that in pathology synthesis, in contrast to inter-subject synthesis, the identity
of the NOR subject is not changing while the disease features are manifested on
the geometry of the subject’s heart and the image appearance stays the same.
Interestingly, the detailed structures of the papillary muscles and myocardial
trabeculations inside the left and right ventricular blood pool are generated despite
not being present in the ground truth labels.

4.3.3 Modeling the Slice Relationship

Our proposed 2D model synthesizes images slice-by-slice with high visual fidelity
and realism. However, the synthetic subject that is composed of stacking multiple
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Figure 4.7: Pathology synthesis to generate the transition between a normal
subject (NOR) to a target pathology such as dilated cardiomyopathy (DCM),
hypertrophic cardiomyopathy (HCM) and dilated right ventricle (RV). The effects
of a disease on the heart geometry of a subject are respectively left ventricle
dilation, myocardial thickening and right ventricle dilation.

2D slices is not generated coherently by the network when we look at the generated
slices from perpendicular directions. The reason is that random samples in the
latent space contain no information about the relationship between different slices
of one subject, i.e. generated slices are uncorrelated. Synthesis examples with
target pathologies and the positive effects of the proposed slice correlation on
generating 3D consistent subject are shown in Figure 4.8 with a three-dimensional
rendering of the synthesized labels. The irregularities in the slice direction are
substantially reduced for the correlated slices for synthesizing different pathological
cases. We notice that some real images may originally be hampered by slice
misalignment artifacts and our correlated sampling cannot reduce this artifact.
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Figure 4.8: Three-dimensional rendering of the labels for uncorrelated and
correlated synthesis for different cases of pathology synthesis. The first three
columns show the uncorrelated slices and the impact of the inconsistency of the
anatomy in the perpendicular views of the short axis slices while the second
three columns show the positive effects of correlating samples on reducing the
inconsistency and irregularity of the consecutive slices. The last column shows
one real example.

4.3.4 Usability of Synthetic Data

Figure 4.9 shows the performance of four segmentation models in terms of Dice
and Hausdorff distance (HD) for left ventricle, right ventricle and myocardium
segmentation. A significant drop in the performance observed for the ACDC
real model (trained using real ACDC data only) suggests a substantial domain
shift (distributional shift) between ACDC and M&Ms-2 images, mostly due to
the acquisition hardware, protocols, and presence of unseen heart pathologies.
While the addition of M&Ms-1 images to the training (ACDC M&Ms model) helps
significantly with tackling this domain shift and improving generalization, we also
note that the addition of the synthesized data with pathological characteristics
substantially improves the segmentation performance and the robustness of the
model (ACDC Real + Synth) across all cardiac diseases. This indicates that the
pathology synthesis approach can generate realistic images with relevant patho-
logical diversity for training a cardiac segmentation network that generalizes well
to even unseen diseases during training. Moreover, it also suggests that synthetic
images generated in this study serve as a realistic substitute for real MR images
when met with limitations in acquiring more data from the target domain.

Additional benefits are observed when augmenting the training with inter-
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Figure 4.9: Dice scores and Hausdorff Distance (HD) performance on the unseen
data from M&Ms-2 challenge with different cardiac pathologies.

subject synthesis results (ACDC M&M-s Real + Synth) in addition to synthesized
pathologies. Since inter-subject synthesis is performed on M&Ms-1 data, this
further contributes to alleviating the domain shift present between the ACDC and
M&Ms images, resulting in the best performance across all three cardiac tissues
and varying pathologies. In other words, the best performance in Dice and HD
across all cardiac diseases is obtained by the model trained using both pathology
synthesis and inter-subject synthesis approaches, indicating the usefulness of the
generated images for clinical tasks. We particularly note a significant improve-
ment in HD scores, primarily due to outlier reduction, as well as a decrease in
the number of over-segmented and under-segmented tissues. Under-segmentation
due to diseased tissue and occlusion is a common problem observed for baseline
models, which can be tackled by the augmentation approach proposed in this study,
allowing the network to learn from a much higher and diverse pool of examples
than just relying on carefully curated and limited real data. We hypothesize
that synthesized images contribute to a higher variation in heart tissue shape
and appearance, particularly those undergoing changes due to the presence of
pathology, which in turn helps with network regularization and generalization.

4.4 Discussion and Conclusion

This study investigated an approach for realistic cardiac magnetic resonance im-
age synthesis with target heart pathologies by separating the task into label
deformation using a VAE and image generation using a label-conditional GAN.
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We introduced intra-subject synthesis to increase the through-plane resolution of
short-axis images and to equalize the number of slices across all subjects. The inter-
subject synthesis was designed to perform cross-subject and cross-vendor synthesis
by generating subjects that have intermediate heart geometries and appearances
between two dissimilar subjects scanned using different vendors. Furthermore, the
pathology synthesis was proposed to generate subjects with heart characteristics
of a particular disease through sampling in the latent space with statistics of a
target pathology and performing linear interpolation between a normal subject
and a pseudo-pathological sample in the latent space of the trained VAE.

To tackle one of the important challenges of 3D medical image synthesis, we
demonstrated that modelling the correlation between slices in the latent space can
be a simple yet effective way to generate consistent 3D subjects from 2D models.

Visualizations of the synthesized images and the distribution of the left and
right ventricular volumes on the synthesized data showed encouraging results.
Moreover, we devised experiments to quantitatively evaluate the usability of the
synthetic data for the development of a generalizable deep learning segmentation
network. We found that both generated images by inter-subject and pathology
synthesis are extremely useful in improving the generalization and robustness of
a deep-learning segmentation model in a challenging clinical environment. The
methods proposed in this study could be extended for other applications in medical
image synthesis such as brain MR image generation and simulation of lesion
progression.

A limitation of our study is the lack of a measure for assessing the 3D con-
sistency of the synthesized subjects. Moreover, the result of the intra-subject
synthesis is not quantitatively evaluated on its own as an independent approach
for increasing the resolution in the slice direction and the effect on segmentation,
apart from qualitative results shown in Figure 4.3. Note that this is a necessary
step for inter-subject and pathology synthesis to equalize the number of slices
for each subject. Another limitation is that we in fact evaluate the usefulness of
the synthetic images for data augmentation, while quantifying the level of image
realism for each synthetic subject remains to be explored. For instance, when
interpolating from a normal subject to a pathological sample, it is likely, but
not guaranteed that the intermediate heart changes reflect what truly happens in
disease progression. Similarly, when interpolation between two subjects, not all
intermediate shapes reflect what can be found in real life. Despite all that, we
examine the benefit of the synthetic images for training a deep learning model
which indicates the usefulness of the generated images for data augmentation.

In conclusion, we demonstrated that our approach could provide a solution
to diversify and enrich an available database of cardiac MR images, resulting
in significant improvements in model performance and generalization for cardiac
segmentation of subjects with unseen heart diseases.
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Supplementary Material

4.4.1 Cholesky Decomposition and Correlated Samples

In order to simulate correlated variables with a given covariance matrix (C),
Cholesky matrix decomposition is used in this study. The Cholesky matrix decom-
position is a factorization of a positive-definite symmetric matrix into a product
of a lower and upper triangular matrix, L and LT , respectively.

C = LLT (4.1)

Assuming an uncorrelated random sample X with unit covariance matrix of E(XXT ) =
I, a new random vector can be computed as Y = LX that its covariance matrix
is derived:

E(Y Y T ) = E(LX(LX)T ) = E(LXXT LT ) = LE(XXT )LT = LILT = LLT = C
(4.2)

Note that the expectation is a linear operator; E(cX) = cE(X).

4.4.2 Generating Sample with Pathology Characteristics

For generating a subject with pathological characteristics, a random sample is
drown using a truncated normal distribution parameterized by the statistics of the
desired pathology, e.g. mean, standard deviation, minimum, and maximum esti-
mated on all subjects with hypertrophic dilated cardiomyopathy (HCM); namely
pseudo-pathological sample xpHCM . These statistics are calculated on the mean
of the posterior distribution of features estimated by the encoder part of the
VAE. The following steps are followed to correlate the elements of this pseudo-
pathological sample cross slice direction and latent dimension:

• Estimate correlation coefficient between latent dimensions across all subjects
with desired pathology using Kendall rank correlation coefficient method;
CorrzHCM with size (nz × nz) where nz is the size of the latent vector
(nz = 16)

• Calculate the lower triangular matrix L using Cholesky decomposition; LzHCM

• Correlate the latent dimensions of the pseudo pathological sample across the
element of latent vector given above formula; ypzHCM = LzHCM xpHCM

• Estimate the correlation coefficient between slices of the target normal sub-
ject (NOR) we wish to use for interpolation; CorrsNOR with size (ns × ns)
where ns is the number of slices (ns = 32)

• Calculate the lower triangular matrix L using Cholesky decomposition; LsNOR
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• Correlate the latent dimensions of the pseudo random sample cross slices
given above formula; zpzsHCM = LsNORypzHCM

• Linearly interpolate between zNOR and zpzsHCM in the latent space

• Reconstruct slices-by-slice the interpolated samples using the decoder part
of the 2D VAE

• Compose 3D volume from synthesized 2D slices

The correlation coefficient matrix for all above mentioned steps is shown in Figure
4.10. Correlating latent dimensions found to be as important as correlating slices
of subject for generating coherent slices with smoothly changing features.

Figure 4.10: Correlation coefficient matrix for a) uncorrelated pseudo-HCM
sample across latent dimensions and b) across slices, c) all HCM subjects across
latent dimensions, d) one normal subject across slices, and e) the correlated pseudo
pathological sample calculated using the Cholesky decomposition.
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Abstract

The clinical utility of late gadolinium enhancement (LGE) cardiac MRI is limited
by the lack of standardization, and time-consuming post processing. In this
work, we tested the hypothesis that a cascaded deep learning pipeline trained
with augmentation by synthetically generated data would improve model accuracy
and robustness for automated scar quantification. A cascaded pipeline consisting
of three consecutive neural networks is proposed, starting with a bounding box
regression network to identify a region of interest around the left ventricular
(LV) myocardium. Two further nnU-Net models are then used to segment the
myocardium and, if present, scar. The models were trained on the data from
the EMIDEC challenge, supplemented with an extensive synthetic dataset gener-
ated with a conditional GAN. The cascaded pipeline significantly outperformed a
single nnU-Net directly segmenting both the myocardium (mean Dice similarity
coefficient (DSC) (standard deviation (SD)): 0.84 (0.09) vs 0.63 (0.20), p < 0.01)
and scar (DSC: 0.72 (0.34) vs 0.46 (0.39), p < 0.01) on a per-slice level. The
inclusion of the synthetic data as data augmentation during training improved
the scar segmentation DSC by 0.06 (p < 0.01). The mean DSC per-subject on
the challenge test set, for the cascaded pipeline augmented by synthetic generated
data, was 0.86 (0.03) and 0.67 (0.29) for myocardium and scar, respectively. The
proposed, A cascaded deep learning-based pipeline trained with augmentation by
synthetically generated data leads to myocardium and scar segmentations that are
similar to the manual operator, and outperforms direct segmentation without the
synthetic images.
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5.1 Introduction

Late gadolinium enhancement (LGE) cardiac MRI is the reference standard for
the non-invasive assessment of myocardial viability, and is widely used in clinical
routine [98]. It has been shown to accurately identify areas of myocardial infarction
[99], and the size and transmurality of scar regions are important parameters to
guide the management of patients [100]. Visual reporting of such parameters is
user-dependent, and thus, the robust and accurate quantification of scar would be
highly beneficial. If the quantification could be reliably performed automatically,
it could also facilitate further adoption of LGE cardiac MRI in clinical practice,
particularly in less specialized, low-volume centers.

The standard approach to the quantification of LGE has been the use of a
fixed intensity threshold value, usually relative to a reference region. The most
common approaches segment scar as being n (typically 5) standard deviations
(nSD) above the mean intensity of a remote normal myocardium region or above
half of the maximum value of a scar region (full width at half maximum (FWHM)).
To date, quantification has primarily been performed in research studies due
to the time-consuming manual interaction and lack of reproducibility between
operators [101]. Advanced methods for the thresholding of scar regions, that do
not require manually drawn reference regions, such as Otsu thresholding [102],
or fitting to expected distributions using expectation-maximization [103,104] have
also been proposed without achieving clinical adoption. In general, these intensity-
based thresholding methods are subject to false positives due to noise and imaging
artifacts, and they do not incorporate any spatial context in the thresholding.

More recently, deep learning, using convolutional neural networks (CNNs), has
become the state-of-the-art for cardiac MRI segmentation in a wide range of appli-
cations [46, 105–113], and it has also been applied to LGE segmentation. Fahmy
et al. demonstrated accurate scar volume quantification using a 3D U-Net in
patients with hypertrophic cardiomyopathy [114] and Zabihollahy et al. proposed
a cascaded pipeline which segments the left ventricle (LV) myocardium and scar
in two steps using images from multiple planes [115]. There has been further
interest in the topic as a result of the open-source dataset made available as part
of the automatic Evaluation of Myocardial Infarction from Delayed-Enhancement
Cardiac MRI (EMIDEC) challenge [116], with several authors investigating the
use of cascaded pipelines [117,118] or the incorporation of prior information [119]
to improve reliability.

In this work, we developed and evaluated a cascaded deep learning pipeline for
automatic myocardium and scar segmentation and quantification in subjects with
suspected acute myocardial infarction. In particular, we proposed a cascaded
deep learning pipeline, consisting of bounding box detection and myocardium
segmentation, followed by scar segmentation, and we investigated the impact of
each individual step on the performance pipeline. We further assessed the benefit
of including synthetic images, generated by a conditional generative adversarial
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network (GAN), in the training data (in addition to conventional data augmen-
tation). Both the GAN-based synthetic data and the step of splitting the task
into simpler sub-problems are designed to overcome the challenge of the limited
amount of training data, and it is hypothesized that both will lead to improved
performance with the small amount of training data.

5.2 Materials and Methods

5.2.1 Dataset

The dataset from the EMIDEC challenge was used [116]. This consists of the LGE
cardiac MRI scans of 150 patients, out of which 105 are pathological and 45 are
normal. The data are divided into training (n=100) and testing (n=50) sets by
the challenge organizers. The data acquisition was performed at the University
Hospital of Dijon (France) on 1.5T and 3T systems (Siemens Medical Solution,
Erlangen, Germany) with a T1-weighted phase sensitive inversion recovery (PSIR)
sequence (TR = 3.5 ms, TE = 1.42 ms, TI = 400 ms, flip angle = 20), performed
10 minutes after the administration of a gadolinium-based contrast agent (Gd-
DTPA; Magnevist, Schering- AG, Berlin, Germany), at concentration between 0.1
and 0.2 mmol/kg, during a breath-hold. Further details can be found in [116].
The images were manually segmented, in consensus, by two expert operators (a
cardiologist with 10 years’ experience in cardiac MRI and a physicist with 20
years’ experience). For the purpose of this work, the scar and microvascular
obstruction (MVO) segmentations are combined in one class label representing
the total infarction area.

Figure 5.1: The proposed scar quantification pipeline. Firstly, a bounding box is
detected around the heart, followed by myocardium segmentation. Subsequently,
scar is segmented, if present, and used to compute the scar burden as a percentage
of myocardial volume.
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5.2.2 Cascaded Pipeline

As shown in Figure 5.1, the proposed cascaded pipeline consists of three main steps:
1) the detection of a bounding box that encompasses the LV cavity and LV my-
ocardium, 2) the segmentation of the myocardium, and 3) the segmentation of scar.
In this work, deep learning models are trained sequentially to achieve each of these
steps. An ablation study is performed by removing steps in the pipeline to analyze
their impact of the performance, and the model performance with the inclusion of
the synthetically generated images is compared with that of a model without this
data augmentation. The segmentation and computed volumes from the automated
analysis are compared to the manual quantification on the EMIDEC challenge
test set. The trained models for both segmentation and synthetic data generator
are made available at https://github.com/cianmscannell/lge-quant-emidec,
along with the generated synthetic data.

Bounding Box

The bounding box algorithm used is as proposed in Scannell et al. [109]. This first
assumes that there is a fixed bounding box in the center of the image. A CNN
is trained to predict, from a LGE image, the transformation of this proposed
bounding box so that it covers the LV myocardium and cavity of the image.
This is framed as a regression problem to predict four continuous values, the
2D translation of the center of the box and the scaling of the two different sides
of the rectangular box. The proposed bounding box is of size 134 × 134 pixels,
which is the mean size present in the training set. Due to the shape of the LV, it
is sufficient to predict the bounding box on a slice in a basal location. This work
uses the second 2D image from the top of the stack to avoid images where the LV
cavity and myocardium are not present.

The CNN takes the original images, center-cropped or zero-padded to a size of
256 × 256 pixels, as input. These input images are min-max normalized, using the
5th and 95th percentile of intensity values as the pseudo-minimum and maximum,
respectively. The architecture consists of four convolutional layers, each layer
with two convolutions using 3 × 3 kernels followed by 2 × 2 max-pooling. These
layers are followed by fully connected layers. Each layer uses batch normalization
and rectified linear unit (ReLU) activations, except the output layer which uses
a linear activation. A batch size of 32 and L2 regularization on the convolutional
kernel parameters was used with a weight of 0.0001. The loss function, the mean
squared error between the four predicted and ground-truth translation and scaling
values, was optimized with the use of an Adam optimizer and convergence was
determined by early stopping. Data augmentation was used, consisting of random
combinations of rotation, translation, blurring, scaling and noise added to the
images. The parameters of the data augmentation are provided in Supplementary
Table 5.3.

https://github.com/cianmscannell/lge-quant-emidec
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Myocardium Segmentation

The segmentation of the myocardium is based on a nnU-Net model, as described
by Isensee et al. [40]. The model architecture and training process are used
as automatically configured by the nnU-Net software. Briefly, the algorithm
automatically optimizes the architecture and hyperparameters of a U-Net model
based on a fingerprint of the training dataset. A 2D network is used with leaky
ReLU activations and instance normalization. The initial number of feature maps
was 32 and doubled each layer until it reached a size of 512. Stochastic gradient
descent with Nesterov momentum (µ=0.99) is used as the optimizer with an initial
learning rate of 0.01. The loss function is the sum between the cross-entropy and
dice loss, as is the default choice for the nnU-Net [40]. After a fixed amount of
1000 epochs, the network with the best validation set performance is chosen. The
algorithm also includes on-the-fly data augmentation. The input is the cropped
LGE image which is reshaped to 128×128 pixels, and normalized in the same way
as described for the bounding box.

Quality control, of the myocardium segmentations is performed in which con-
nected component analysis was used to identify failed (not closed) myocardium
segmentations, which were then re-segmented with ten different augmented (by
translation) bounding boxes. The 10 predictions are summed and the pixels
that are predicted in the myocardium greater than k times are included in the
final prediction, where k is the smallest number that yields a closed myocardium
segmentation. If no closed myocardium is achieved in this manner, the original
prediction is used.

Scar Segmentation

A second nnU-Net model is trained for the scar segmentation. The network
input is a 64 × 64 pixel image, cropped according to the contour gravity center of
the myocardium segmentation. The image is also masked with the myocardium
segmentation to set intensity values outside the myocardium or LV cavity to 0.
The myocardium values are normalized to a signal intensity range between 0 and
1, using the 5th and 95th percentiles, as before. The LV cavity is set to a fixed
signal intensity value of 2.5. A further quality control step is used that removes
small regions of predicted scar by removing regions that lead to a predicted scar-
to-myocardium volume ratio less than 3%, as scar sizes smaller than this are not
feasible in this population.



5.2. Materials and Methods 95

Figure 5.2: A flowchart of the synthetic image generation process. For
inference, augmented segmentation labels are input to a trained conditional
GAN, accompanied by a style image (red). The label maps are generated by
swapping existing labels between pathological and normal subjects (green) and by
performing morphological operations on scar labels (elastic deformation, rotation
and dilation or opening) (purple). The generated synthetic data are then used as
augmentation data for the cascaded pipeline.

5.2.3 GAN-Based Image Synthesis

The image synthesis module, as shown in Figure 5.2, is based on a ResNet-encoder
coupled with a segmentation-conditioned GAN that uses SPatially-Adaptive (DE)-
normalization layers (SPADE) [75] throughout the generator architecture. The
use of SPADE-based conditional GANs for preserving the anatomy of the seg-
mentations for cine cardiac MR image synthesis was investigated previously by
Abbasi-Sureshjani et al. [19] and Amirrajab et al. [20] and it was shown that
providing multi-class labels to guide the SPADE generator allows the synthesis
of realistic images. The generator consists of a series of the residual blocks with
SPADE normalization, followed by nearest neighbor up-sampling layers, as in [19].
The SPADE layers normalize the activations with a spatially-varying learned scale
and bias that comes from the input segmentation mask. This is done to encode
information about the input segmentation in the generated image. In contrast to
previous works, a LGE image was input to the ResNet-encoder to extract the style
and background anatomical information in the synthesis process. These two steps
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allow the control of both the underlying anatomy and the image appearance (style)
of the synthetic image. The training process used pairs of LGE style images with
the corresponding ground-truth segmentations, and is described in more details
in [20]. The architecture of the discriminator, the losses, and training settings are
kept unchanged from the original work of Park et al. [75].

After training, to generate new pairs of synthetic LGE images with the trained
generator, two strategies are used: 1) augmented labels, and 2) swapped labels. For
the augmented labels, the segmentation labels from the training set are augmented,
by rotation and morphological operations (parameters defined in Supplementary
Table 5.4), to create previously unseen shapes and positioning of scar, and input
to the generator (shown in the purple box of Figure 5.2), and for the swapped
labels, existing segmentation labels from pathological patients are combined with
style images from normal patients, and vice versa, to create new patients (shown
in the green box of Figure 5.2). The augmentation of the scar segmentations
included rotation by a multiple of 60°, elastic deformation, dilation and opening.
The augmented and swapped labels are used to generate synthetic data for the
myocardium segmentation training, and only the augmented labels are used for
the scar segmentation as, due to the masking of the myocardium, changing the
background (via the swapped style image) will have no effect.

5.2.4 Evaluation

An ablation study was first performed, trained only with the real patient data, to
analyze the impact of the individual steps of the cascaded pipeline, by comparing
the myocardium and scar segmentation of:

• a) the full cascaded pipeline

• b) myocardium and scar segmentation in two steps, without the bounding
box

• c) directly segmenting the myocardium and scar with one nnU-Net, with the
bounding box

• d) directly segmenting the myocardium and scar with one nnU-Net, without
the bounding box

• e) the full cascaded pipeline trained with the GAN-based synthetic image
data augmentation.

Supplementary Figure 5.7 shows a representation of the four methods (a) to
(d). As the cascaded nature of the pipeline can lead to the propagation of errors,
when an incorrect myocardium segmentation is used to mask the input to the scar
segmentation model, this effect was also studied. In particular, the increase in
performance found when replacing the predicted myocardium segmentation with
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the ground-truth in the cascaded pipeline was analyzed. Secondly, the performance
was tested by comparing the cascaded pipeline trained only with the real data (a)
and a version with training augmented by synthetic images (e), to assess the
impact of adding synthetic data to the real dataset. In order to avoid the possibly
confounding effect of the cascaded pipeline, a direct one-step segmentation model
was also trained with and without the synthetic data augmentation.

These comparisons were performed on a randomly selected internal testing set
(N=20) split from the training set. This analysis was performed using the Dice
similarity coefficient (DSC) metric on a per-slice level and the performance of
models are compared with the Wilcoxon signed-rank test. The ability to classify
slices as either having no scar or have significant (> 15% of the myocardium) was
also assessed, with and without the GAN-based synthetic images.

The final evaluation was performed with the full cascaded pipeline, augmented
with the GAN-based synthetic data, the model with the best performance on
the internal test set, on the 50 test subjects from the EMIDEC challenge, where
the mean DSC, Hausdorff distance (HD) and volume difference per-subject was
reported. The automated scar quantification was further evaluated with respect to
the manual quantification using Pearson correlation and Bland-Altman analyses.
We also test the accuracy of classifying patients as scarred or not. The segmen-
tation labels for the test set are not available publicly but the evaluation of these
metrics was performed by the challenge organizers.

5.3 Results

5.3.1 Cascaded Pipeline

The DSC values for both myocardium and scar between the manual and automatic
segmentations, for the four versions of the pipeline on the internal test set, are
shown in Figure 5.3 (a)-(d). The proposed full cascaded pipeline (option (a)) had
the highest DSC for both the myocardium (mean DSC (standard deviation (SD)):
0.84 (0.09)) and scar (0.72 (0.34)) segmentations. This was significantly higher
than all other approaches including a single nnU-Net directly segmenting both the
myocardium and scar (option (d): myocardium DSC: 0.63 (0.20), p < 0.01 and
scar DSC: 0.46 (0.39), p < 0.01), the direct myocardium segmentation followed
by scar segmentation (option (b): myocardium DSC: 0.79 (0.15), p < 0.01 and
scar DSC: 0.68 (0.37), p = 0.02), and the two-step pipelines of bounding box
followed by direct myocardium and scar segmentation (option (c): myocardium
DSC: 0.80 (0.12), p < 0.01 and scar DSC: 0.68 (0.35), p < 0.01). These results
are summarized in Table 5.1.
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Table 5.1: The mean and standard deviation (SD) DSC for the myocardium and
scar segmentation with each of the model and training configurations.

Myocardium Scar
Mean SD Mean SD

Option a) 0.84 0.09 0.72 0.34
Option b) 0.79 0.15 0.68 0.37
Option c) 0.80 0.12 0.68 0.35
Option d) 0.63 0.20 0.46 0.39
Option e) 0.85 0.09 0.78 0.28

Figure 5.3: The distributions of the DSC values for myocardium (purple) and
scar (yellow) segmentations on the internal test set, for the five trained versions of
the cascaded pipeline. These are (option (a)) the proposed full cascaded pipeline,
(b) myocardium and scar segmentation in two steps, without the bounding box,
(c) directly segmenting the myocardium and scar with one nnU-Net, with the
bounding box, (d) directly segmenting the myocardium and scar with one nnU-
Net, without the bounding box, and (e) the full cascaded pipeline trained with the
synthetic data augmentation. The X mark indicates the mean value.

5.3.2 GAN-Based Synthetic Image Data Augmentation

Figure 5.4 shows GAN-based synthetic images generated from one real patient
by rotating, elastically deforming, and morphologically opening the original seg-
mentation mask. The DSC values for the full cascaded pipeline trained with the
synthetic data are shown in Figure 5.3 (e). The mean (SD) DSC between the
manual and automatic myocardium segmentation increased by 0.01 (from 0.84
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Table 5.2: The mean (SD) DSC for the scar segmentation for both the cascaded
pipeline and a single nnU-Net model with and without the GAN-based data
augmentation.

Without synthetic data with synthetic data Difference p-value
Cascaded pipeline 0.72 (0.34) 0.78 (0.28) 0.06 < 0.01

Single nnU-Net 0.68 (0.35) 0.71 (0.33) 0.03 < 0.01

(0.09) to 0.85 (0.09)) with the addition of the synthetic training data on the
internal test set. The inclusion of the synthetic data for training resulted in a
0.06 increase in the scar DSC (from 0.72 (0.34) to 0.78 (0.28)), a statistically
significant difference (p < 0.01), as well as a decrease in the SD. Moreover, on
the internal test set, the inclusion of the GAN-based synthetic images improved
the classification of slices as scarred or not from 87% (122/141) correct to 94%
(132/141). The identification of slices with significant levels of scar (>15% of the
myocardium) increased from 86% (49/57) to 97% (55/57). For the direct one-step
segmentation the DSC is also increased from 0.80 (0.12) to 0.84 (0.11) for the
myocardium and 0 .68 (0.35) to 0 .71 (0.33) for scar (both p < 0.01). Replacing
all the predicted myocardium segmentations with the manual ground-truth label
only gives a modest improvement in DSC for the scar segmentation from 0.78 to
0.80, also on the internal test set.

Figure 5.4: The GAN-based synthetic LGE images generated with a set of
rotated and deformed input labels from a single patient (original LGE images
and labels shown in the top row) for all slices apex (left) to base (right).

5.3.3 Challenge Test Set
The proposed cascaded pipeline trained with synthetic data augmentation was
evaluated on the EMIDEC challenge test set (N=50 subjects). Figure 5.5 shows
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segmentations for three representative patients from the test set showing both good
and bad performance (note that the ground-truth segmentations for the test set
are not available for comparison). The mean (SD) DSC, HD and volume difference
per-subject was 0.86 (0.03), 15.7 (11.9) mm and 11.5 (8.4) cm3 respectively for
myocardium segmentation. Five out of 358 myocardium segmentations failed to
generate a closed shape and were identified by the quality control procedure, and
a correction was attempted. Secondly, the model showed a mean (SD) DSC and
volume difference between the manual and automatic scar regions of 0.67 (0.29)
and 41.0 (5.8) cm3 per-subject, and the difference in scar volume relative to the
volume of the myocardium was 3.41% (4.8%). Furthermore, the model classified
patients as scarred or not with an accuracy of 94% (47 out of 50 subjects).

Figure 5.5: The segmentations of three representative patients selected from the
test set, showing the LGE image and the predicted scar (red) and myocardium
(blue) segmentations. It can be seen that in subject 1 (left), in the mid-slice of
subject 2 (middle), and apex slice of subject 3 (right) scar is accurately identified
by the models. However, for subject 2, the myocardium segmentation in the
apical slice is inaccurate, and in the basal slice of subject 4 the LV outflow tract is
incorrectly identified as scar. Note that the manual ground-truth for the test set
is not publicly available.
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Figure 5.6: The top row shows a scatterplot of the manual versus automatic
per-subject segmentation volumes for the myocardium and scar segmentation ((a)
and (b)) with the Pearson correlation coefficient (r) and line of best fit, with the
slope reported. (c) and (d) shows the Bland-Altman analysis for the myocardium
volume (c) and scar volume (d).

Figure 5.6 compares the computed volumes for the automated and manual
segmentations in a scatterplot, the Pearson correlation coefficient is 0.96 and
0.94 for myocardium and scar, (a) and (b) respectively. Per-subject, Bland-
Altman analysis on the LV myocardial volume (c) showed an agreement between
the manual and automatic quantified volumes of the proposed cascaded pipeline
with bias of 10.24 cm3 and limit of agreement 19.67 cm3. Additionally, a good
agreement between the manual and the proposed automatic quantified scar volume
with a bias of 2.74 cm3 and limit of agreement of 13.06 cm3 was shown (d).

5.4 Discussion

In this work, two approaches are studied to learn from small datasets for the
segmentation of scar from LGE cardiac MRI: the splitting of the task into smaller
sub-problems and the use of synthetic data to increase the amount of available
data. It is thought that the simpler sub-problems can be solved more effectively
with the limited amount of available data and then applied in a cascaded pipeline
to improve performance. In particular, a cascaded model was proposed that
used three consecutive neural networks to identify the left ventricle, delineate
the left ventricular myocardium and segment regions of myocardial infarction.
The pipeline was trained based on manual segmentations of publicly available
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LGE cardiac MR images from the automatic Evaluation of Myocardial Infarction
from Delayed-Enhancement Cardiac MRI (EMIDEC) challenge. Additionally, a
segmentation-conditional GAN was proposed that uses SPADE layers coupled by
a ResNet encoder to synthesize realistic LGE images on given augmented labels,
for the purpose of data augmentation.

The proposed cascaded pipeline outperformed direct segmentation consistently
in both the left ventricular myocardium and scar segmentation by a mean DSC
increase of 0.21 per-slice on the internal test set. The three-step pipeline also im-
proved over the combinations of two-step pipelines. Furthermore, the performance
was improved by the synthetic image augmentation, with a mean DSC increase
of 0.06 for the scar segmentation. These reported DSC results were comparable
to the inter- and intra-observer agreement found by Lalande et al. [116], intra-
observer 0.84 and 0.76, inter-observer 0.83 and 0.69 for myocardium and scar
segmentation, respectively. The impact of the synthetic data augmentation was
also studied without the potentially confounding effects of the cascaded pipeline.
That is, for the direct segmentation of scar and myocardium using a single 2D
nnU-Net, models were trained with and without the synthetic data augmentation.
As also found for the cascaded pipeline, for the direct segmentation the model
trained with synthetic data augmentation significantly outperformed the model
trained without the synthetic data.

A potential disadvantage of the cascaded approach is that errors can be prop-
agated through the steps of the pipeline so that if, for example, an error is made
in segmenting the myocardium, it will impact the subsequent scar segmentation.
To test the effect of this error propagation, the model for scar segmentation was
applied using the ground-truth myocardial segmentations and compared to using
the predicted myocardium segmentations, on the internal test set. There is a small
increase in mean DSC for the scar segmentation from 0.78 to 0.80 indicating that
the negative impact of the cascaded pipeline is minimal and the cascaded approach
still significantly outperforms the alternatives. This result confirms the findings of
the original challenge, where cascaded pipelines were seen to perform well [120].

Our mean myocardium (0.86) and infarction (0.67) DSC scores compare fa-
vorably with the challenge results [120], with the DSC scores only being bettered
by a single participant. This winning solution of Zhang reported a mean DSC
of 0.88 for the myocardium and 0.71 for the infarction regions [118]. Zhang
proposed a two-step system in which the coarse segmentation output of an initial
2D model was then input to a further post-processing 3D model to improve the
3D spatial consistency of the segmentations. Our proposed cascaded pipeline with
GAN-based synthetic data augmentation performs better than all other challenge
participants. For the purely 2D segmentation methods, our proposed pipeline
represents a new state-of-the-art. Although it is not studied in this work, an
extra post-processing step, similar to Zhang et al, has the potential to improve on
this [118]. One of the typical disadvantages of using a 3D model in this application
is that there are much less 3D images for training than 2D slices, and our initinal
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experiments with a 2.5D model did not improve results. However, as was shown in
this work, it is possible to use synthetic images to augment the training dataset,
and this is a possible future line of research to exploit the 3D nature of the data.

The current work uses rotations with dilation and opening of scar to augment
the segmentation labels to input to the synthetic data generator. This work could
be extended to use more complex patterns of scar and increase the robustness of
the model. For example, patients with hypertrophic cardiomyopathy (HCM) often
have complex patchy scar patterns and this could be simulated to allow training
with a synthetic cohort of HCM patients without having to manually generate the
training labels. Since the trained generator synthesizes the images based on a given
LGE style image, different style images, from a difference acquisition sequence for
example, could also be used to generate a more diverse training set.

The thorough evaluation of the impact of the synthetic data in this work
using a challenging dataset with varying levels of contrast, noise, and artifacts
indicates that the benefit is also likely to be more generally applicable to different
applications and is also similar to that found in previous studies [56, 121, 122].
In addition to the use of GAN-based synthetic data, an advantage can also be
seen to a cascaded pipeline, where the overall task is split into more manageable
sub-problems, and together these approaches can be exploited to lower the manual
annotation burden of deep learning.

5.5 Limitations

The major limitation of this work is that it used a homogenous cohort of se-
lected patients, from the EMIDEC challenge. These images were acquired at a
single center, using scanners from a single vendor and uniform imaging protocols.
Therefore, the trained model may not generalize to different clinical cohorts due to
the "domain-shift" (the varying levels of signal, noise and contrast, differing scan
planning, and diverse disease patterns). Although methods are being developed
to account with this [123], in future work, the model would need to be tested
on images from different patient cohorts, scanners, and centers prior to clinical
deployment.

Our approach of using a 2D model treats each imaging slice independently
and does not take advantage of the 3D relations between the slices. Indeed, we
observe sub-optimal performance in the apical (e.g Figure 5.5) and basal slices, as
is commonly found for cardiac MRI segmentation ( [46]), due to the more complex
anatomy, thinner myocardium in the apical slices or LV outflow tract in the basal
slices. In future work, 3D or long axis information could be incorporated to
constrain the segmentations to be more spatially consistent. Potential extensions
of the GAN-based image synthesis could also focus on generating more complex
cases for training a more robust segmentation model.

This work segmented the scar and MVO regions as only one region of infarc-
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tion and did not separate the MVO regions. The pipeline could be adapted, in
future work, to consider the MVO regions separately. It also only focused on the
identification of infarctions and the pipeline could also be extended beyond the
segmentation to also classify patients’ disease [124]. This could potentially incor-
porate spatial information of the scar, as well as other relevant clinical biomarkers
to improve the classification [120].

5.6 Conclusion

In a population of patients with suspected acute myocardial infarction, our results
demonstrate that a cascaded deep learning-based pipeline trained with augmenta-
tion by synthetically generated data leads to myocardium and scar segmentations
and quantitative volume values that are similar to the manual operator. The three-
step cascaded pipeline was shown to significantly outperform direct segmentation
with a mean DSC increase of 0.26 per slice. Additionally, the inclusion of GAN-
based synthetic images as data augmentation further improved the performance
and yielded a further mean DSC increase of 0.06 per-subject for scar segmentation.
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Supplementary Material

Figure 5.7: A schematic representation of the ablation test, showing the different
combinations of steps tested in the pipeline.

Type of Augmentation Value
Gaussian Noise µ= 0.1, σ= 0.1
Gaussian Blur σ= 1.5

Shear U(-20, 20)
Rotation U(-90, 90)

Translation (independent in x and y direction) ±U(0.14, 0.21)
Scale U(0.5, 1.5)

Table 5.3: The parameters used for the data augmentation in the bounding box
training. U(a, b) denotes that the parameter value was randomly sampled from a
uniform distribution on the interval [a, b]

Type of Augmentation Value
Rotation 0, 60, 120, 180, 240, 300

Elastic deformation 1 α= 50, σ=5
Morphological opening -
Morphological dilation -

Table 5.4: The parameters used for the augmentation of ground-truth labels for
image synthesis.
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Abstract

Cardiac magnetic resonance (CMR) image segmentation is an integral step in
the analysis of cardiac function and diagnosis of heart related diseases. While
recent deep learning-based approaches in automatic segmentation have shown
great promise to alleviate the need for manual segmentation, most of these are
not applicable to realistic clinical scenarios. This is largely due to training on
mainly homogeneous datasets, without variation in acquisition, which typically
occurs in multi-vendor and multi-site settings, as well as pathological data. Such
approaches frequently exhibit a degradation in prediction performance, particu-
larly on outlier cases commonly associated with difficult pathologies, artifacts and
extensive changes in tissue shape and appearance. In this work, we present a
model aimed at segmenting all three cardiac structures in a multi-center, multi-
disease and multi-view scenario. We propose a pipeline, addressing different
challenges with segmentation of such heterogeneous data, consisting of heart region
detection, augmentation through image synthesis and a late-fusion segmentation
approach. Extensive experiments and analysis demonstrate the ability of the
proposed approach to tackle the presence of outlier cases during both training and
testing, allowing for better adaptation to unseen and difficult examples. Overall,
we show that the effective reduction of segmentation failures on outlier cases has
a positive impact on not only the average segmentation performance, but also on
the estimation of clinical parameters, leading to a better consistency in derived
metrics.
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6.1 Introduction

Accurate segmentation of cardiovascular magnetic resonance (CMR) images is an
essential step for heart structure and function assessment, as well as a reliable
diagnosis of major cardiovascular diseases [108]. In current-day clinical practice
this procedure is typically performed manually or semi-automatically, requiring
significant input and correction from clinicians. However, recent developments
in automating this task have achieved a remarkable performance. These include
approaches ranging from more classical techniques based on statistical shape mod-
els or cardiac atlases to newer deep learning (DL) based models, which have
gradually outperformed previous state-of-the-art methods [111]. However, most
DL methods proposed in the literature have been trained and evaluated using
images acquired from single clinical centers, utilizing similar imaging protocols and
hardware. Consequently, such models exhibit a significant drop in performance
when evaluated on unseen, out-of-distribution data such as abnormal and patho-
logical cases not included in the training set, often characterized by a considerable
amount of outliers [125–127]. While typically defined as erroneous or low quality
samples, we refer to outliers as data samples exhibiting rare conditions, under-
represented in the training data, which often occur at the deployment time. A
rare occurrence of such classes during training negatively affects model’s ability
to adapt to their appearance at test time, leading to a significant degradation in
prediction performance and generalization ability.

6.1.1 Challenges of CMR Segmentation

A change in acquisition parameters causes cardiac MR images to exhibit a great
variability in terms of contrast, texture and noise. On the other hand, variation
in patient characteristics causes significant divergence in tissue shapes and sizes.
Such diversity of imaging characteristics is further intensified by changes in scanner
models or vendors. The appearance of pathology has a significant influence on the
ventricle morphological variation, resulting in unique tissue shapes and contrast,
often under-represented in datasets available for training. Ventricular remodeling
further causes changes in heart mass, geometry, function and respiratory wall
motion. Segmentation is most commonly hindered by the appearance of dilated
left and right ventricles, causing increased wall thickness and regional wall abnor-
malities. Diseases such as tetrology of fallot and defects in inter-atrial commu-
nication induce challenges such as the overriding aorta, right ventricular outflow
tract obstruction and pulmonary stenosis. Moreover, segmentation difficulties are
caused by gray level inhomogeneities in the blood flow, as well as the presence of
papillary muscles and trabeculations, which exhibit the same intensity levels as
the myocardium.

Finally, segmentation complexity is largely affected by the slice level of the
image, where apical and basal slices are more difficult to segment compared to
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mid-ventricular slices. Due to low MRI resolution, sizes of small structures at the
apex and base are often incorrectly estimated due to the vicinity of the atria.
Moreover, while the short-axis image orientation is typically used to develop
segmentation algorithms due to its efficiency for analysing both ventricles, it is
not fully optimized for the right ventricle [128–130].

6.1.2 Related Work

Recent attempts to handle issues with model robustness and a large number
of outliers propose training with images acquired from multiple large cohorts;
however, these works do not explicitly evaluate the trained models on completely
unseen cohorts from other centers, nor directly address the domain shift between
training and unseen cohorts [39, 105, 106, 131]. Other research focused on image
and latent space augmentation techniques on models trained and evaluated mostly
using single cohorts, with some examples of performance evaluation on a limited
number of unseen cohorts [132–135]. However, such approaches are limited by
different standards in annotation operating procedures, experiments conducted
on private data, as well as the need for a training set sufficiently large to model
immense variability across subjects. Subsequently, these models may perform
significantly worse in clinical settings due to difficulties adapting to a more het-
erogeneous subject population, typically containing a significant number of outlier
cases.

Besides data augmentation, other techniques incorporating modifications in
model architectures have been proposed to improve the robustness of DL models
[105]. Solutions such as transfer learning [136] have been successful, but are limited
by the requirement to perform fine-tuning for each specific domain. Domain
adaptation approaches [137], focused on extracting domain invariant features,
discriminative enough for the task at hand, have shown variable, but promising
results for a number of image analysis applications [138, 139]. However, many
studies still report inconclusive results about the positive effects of domain adap-
tation on out-of-domain, unseen data [140]. An attempt to address the issue
of generalization in CMR segmentation is a recently organized M&Ms challenge,
providing a benchmark for testing CMR segmentation algorithms on data from
different centers and scanner vendors [46]. Many approaches presented through-
out this challenge demonstrated improvements in domain adaptation, adversarial
training, disentangled representation learning and augmentation to improve model
generalization. However, few studies additionally focus on the performance of such
methods in the presence of diseased tissue, as well as on tackling outlier cases
hindering the overall performance of the proposed approaches.

Recent developments in the area of generative adversarial networks (GANs)
have paved the way towards a number of interesting medical imaging applications,
from style transfer to utilizing GAN-like architectures for classification or seg-
mentation [9, 53, 83, 141]. However, methods focused on medical image synthesis
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have captured the most attention due to their ability to generate realistic-looking
medical images, thus having a potential to increase and vary the available training
data [13, 86–88]. While a lot of research so far has focused on improving the
quality of image synthesis, a small amount of work evaluates their applicability
across different medical image analysis tasks. Moreover, the application of GAN-
synthesized images to address algorithm robustness in the presence of out-of-
domain images, as well as on data undergoing variations in size, shape and contrast
induced by the presence of pathology, has rarely been explored.

6.1.3 Our Contributions

Motivated by the observed heterogeneity in cardiac MR images, we propose a
multi-stage pipeline aimed at improving segmentation robustness and handling
outliers in multi-vendor, multi-center, multi-view and multi-disease cardiac MRI
data.We identify the main aspects causing a domain shift between images of
different cardiac pathologies, acquired from different sources, and hypothesize
that these properties can be simulated by applying a series of steps proposed
in this work. To reduce the effect of variations in the FOV and heart size,
we introduce a heart region detection module, trained to constrain the amount
of visible background tissue and centralize the heart in the image. To address
variations in contrast, heart appearance and shape, we utilize conditional GANs to
generate a large number of highly realistic and diverse images with corresponding
labels. We particularly focus on generating sufficient pathological examples to
balance the ratio between pathological and normal cases. In addition, we handle
variations in contrast by performing a series of intensity transformations, aimed
at emphasizing tissue shape. To regularize the segmentation performance and
produce a robust model that is able to handle difficult, outlier cases, we introduce
a late fusion approach to training.

Throughout our experiments, we (i) systematically analyze the effect of the
proposed pipeline on the model robustness across publicly available M&Ms-2
challenge data1 [46] and show that the proposed technique is able to improve
the performance on outlier cases;(ii) demonstrate the importance of outlier re-
duction on the overall segmentation performance on pathological data, as well
as clinically-relevant parameters;(iii) handle the limitation in data availability by
introducing a conditional image synthesis module, able to generate highly realistic
and diverse images with corresponding labels; (iv) address the mis-segmentation
of pathological tissue altering heart tissue intensity levels and shape by utilizing a
variational auto-encoder to increase the diversity of pathological examples in the
training set and (v) show that the proposed pipeline has the ability to adapt to
completely unseen, out-of-domain datasets.

1More information about the M&Ms-2 challenge and the data provided can be accessed at
https://www.ub.edu/mnms-2/

https://www.ub.edu/mnms-2/
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6.2 Materials and Methods

6.2.1 Method Overview

The overview of the proposed pipeline is shown in Figure 6.2, consisting of 1) heart
region detection module, 2) label-conditional image synthesis with a variational
autoencoder (VAE) for label deformation and 3) late fusion-based segmentation
module utilizing transformed versions of input images during training. We apply
the proposed method to both short-axis and long-axis cardiac MR images. In the
following sections, we introduce each component of the pipeline, as well as the
data used for training and validation.

6.2.2 Data

The M&Ms-2 challenge data is comprised of 360 patients with a variety of right-
ventricle (RV) and left-ventricle (LV) pathologies, as well as a control group,
distributed as shown in Table 6.1. The data is acquired using different 1.5T
and 3.0T scanners from three different manufacturer vendors (Siemens, GE, and
Philips), undergoing variations in contrast and anatomy (see Figure 6.1). The
in-plane resolution of the provided images varies between 0.78 to 1.57 mm, with
slice thickness ranging from 8.6 to 14 mm, resulting in a total number of slices
varying between 9 to 13 slices per each short-axis image.

Figure 6.1: Variations in field-of-view, image contrast and appearance, anatomy,
and pathology for SA and LA images in the training set.

The training subset includes 160 cases with expert annotations for RV and LV
blood pool, as well as the LV myocardium (MYO). The short-axis and long-axis
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view is provided for each patient. The training set contains five different types of
LV and RV pathologies, as well as healthy subjects. The validation set contains
40 cases with 10 cases of pathologies not present in the training set. The final
algorithm is evaluated on a separate test set containing 160 cases as outlined in
Table 6.1. We use the provided validation set for testing, increasing the size of
the testing set to a total of 200 patients (or 400 ED and ES SA/LA images)
while the evaluation and the development of the algorithm is exclusively done on
the training set alone. All images were annotated by two annotators according
to the same standard operating procedure (SOP) used for the ACDC MICCAI
2017 challenge [39], while maintaining consistency between short and 4 chambers
long-axis in basal and apical regions.

Table 6.1: Distribution of the M&Ms-2 challenge data per pathology. Note that
all values represent the total number of studies, taken at both ED and ES phases.

Pathology Training Validation Testing
Dilated Right Ventricle (RV) 0 5 25
Tricuspidal Regurgitation (TRI) 0 5 25
Tetralogy of Fallot (FALL) 20 5 10
Interatrial Communication (CIA) 20 5 10
Congenital Arrhythmogenesis (ARR) 20 5 10
Dilated Left Ventricle (LV) 30 5 25
Hypetrophic Cardiomiopathy (HCM) 30 5 25
Normal (NOR) 40 5 30

6.2.3 Heart Region Detection Module

Cardiac MR images acquired at different sites and from varying scanner vendors,
typically undergo changes in the acquisition protocol, resulting in images of varying
resolution and FOV. This leads to varying heart sizes across different scans, where
the heart often takes up only a small portion of the image compared to the
background. Experiments show that neural networks trained on images of varying
FOV, without ensuring that there is an equal representation of different heart sizes
in the training set, often confuse background tissue for cardiac tissue and lead to
a large number of false positive predictions.

To address this, we train a regression-based convolutional neural network (CNN),
proposed in [94], to automatically detect a bounding box encompassing the heart in
both SA and LA images. The detected bounding box is then used for cropping the
full FOV images at inference time. The CNN is trained in a supervised manner,
with labels obtained from ground truth masks available in the training set by
computing the smallest bounding box that fits the entire heart in the FOV and
expanding it by 25 voxels to include some background tissue. Before generating
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the training labels, we resample all SA images to a median spatial resolution of
1.25 × 1.25 × 10mm3 and all LA images to a spatial resolution of 1.25 × 1.25mm2.

The inputs to the network are 1000 2D (256 × 256) mid-cavity SA slices
extracted from the training data-set and all LA slices, normalized to intensity
values in the range of [0,1]. The cropped SA and LA images using the predicted
bounding box are post-processed to the size of 128×128 voxels and 176×176 voxels,
respectively. While the trained network is applied on test images during evaluation,
training images are cropped manually using the available ground truth labels.
A detailed description of the architecture and training procedure is available in
Supplementary Material 6.6.

Cropped  
Test Image 

Segmented 
Image 

Full FOV 
Retrieval 

Test Image 

Data
Augmentation

Train
Test

Train Image Cropped Image 

 Segmentation 3Synthesis2ROI Detection1

VAE-based Label
Deformation

Heart Label Cropped Label 

Figure 6.2: Proposed pipeline including the ROI detection module (left),
image synthesis module (middle) with VAE-based label deformation, and image
segmentation module (right).

6.2.4 Synthesis Module

The synthesis module encompasses two models; i) image synthesis via label-conditional
GANs and ii) label deformation via latent space manipulation in VAEs. The
conditional GANs translate the ground truth labels to realistic images while the
VAEs produces new labels with anatomically plausible deformations.

Conditional Image Synthesis

The image synthesis model is comprised of a ResNet-based [76] style encoder cou-
pled with a label-conditional generator that uses spatially adaptive normalization
layers (SPADE) [75] throughout the network architecture. The ResNet encoder
is designed to extract style information of the input image and provide it to the
generator that preserves the content of the input label map via the conditional
SPADE normalization layers. The input image is first fed to the ResNet encoder
including a set of convolutions, downsampling and residual blocks followed by two
fully connected layers to extract the style information in the bottleneck. This
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information is then passed to the generator that consists of six SPADE residual
blocks, each including SPADE normalization layers that utilize corresponding
segmentation mask of the input image for modulating the activation [75].

Previous works in [19, 20] have shown the effectiveness of using SPADE-based
generators in translating input segmentation labels to realistic CMR images. In
contrast to their work, our approach alleviates the need for providing multi-
tissue segmentation masks for high-quality synthesis by adding the ResNet style
encoder network. Moreover, to introduce anatomical variations, random elastic
deformation and morphological dilation are applied on the segmentation masks in
a previous work [94]. Despite showing the benefit of label deformation through
morphological operations, the heart anatomy of the synthesized subjects is not
necessarily anatomically plausible. Here we propose a VAE-based label deforma-
tion approach that would provide us with more plausible heart deformations via
label encoding and latent space manipulation.

VAE-Based Label Deformation

Instead of elastically deforming the labels as in [94], we propose a deep-learning
based label deformation using Variational Autoencoders (VAEs) aiming to learn
the underlying factors of heart geometries from the ground truth labels. The
VAE model encodes the shape information of the heart in a compressed manner
in the latent space during training. We add random perturbations to the latent
code of the original label and then perform label reconstruction by feeding the
manipulated latent code to the decoder network. This manipulation of the latent
code changes the heart geometry of the reconstructed label. The rationale behind
this approach is that we attempt to directly manipulate the learned geometrical
features of the input label in the latent space rather than randomly deform the
labels in the image space.

The input of the VAE model is a one-hot encoding version of the label map
including four channels for cardiac classes and background. The encoder part
of the model includes four convolutional blocks with three convolutional layers
each followed by batch normalization (BN) and LeakyReLU activation function.
The encoded features are fed to four sequential fully connected layers to output
the parameters of a Gaussian prior over the latent representation. The decoder is
comprised of four convolutional blocks each with one up-sampling layer followed by
two convolutional layers with BN and LeakyReLU. The last additional block of the
decoder includes one convolutional layer followed by BN and another convolution
with four channel outputs and Softmax activation function. The VAE model is
trained using a weighted combination of cross-entropy loss as the reconstruction
loss and Kullback-Leibler divergence (KLD) with a weighting factor of β for
regularization of the latent space capacity [96]. We experimentally identify the
size of the latent vector (nz = 16) and weight of KLD (β = 15) by inspecting the
quality of the label reconstruction and the outcome of latent manipulation.
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6.2.5 Synthesis Strategy
Two identical image synthesis models are trained using LA and SA cardiac MR
images. To augment and balance the data using these trained synthesis models,
the following strategies are devised. For each vendor-specific subset, the outlier
cases are identified based on the end-diastolic or end-systolic volume for the RV
calculated using the ground truth label of the SA images. These outlier cases,
separated from the rest of the population, are used for image synthesis. For
balancing the ratio between outlier cases and the rest of the population, we add
different perturbations in the form of Gaussian noise to the corresponding latent
space of each label to manipulate labels. This is done in a way that we eventually
create roughly 2000 synthesized cases including 50% outliers and 50% the rest of
cases. We follow the same strategy for the data from each scanner vendor.

The same strategy is not optimal for LA images as we observe anatomical
distortions when noise is added to the latent space of the LA slice. We hypothesize
this might be due to having a limited number of LA slices compared to SA
stacks and consequently not learning a rich latent space for coherent sampling
and accurate reconstruction. Instead, we interpolate between the latent codes from
end-diastolic and end-systolic phases of the same subject and feed the interpolated
latent codes to the decoder to reconstruct the intermediate shapes. We additionally
apply elastic deformation to create more anatomical variations for the LA images.

6.2.6 Segmentation Module

Contrast Transformations to Enhance Heart Shape Features

One of the main challenges of deploying a segmentation algorithm on heteroge-
neous data is its performance in the presence of extensive contrast and intensity
variations, arising from a combination of different protocols, signal weighting
techniques and hardware used for acquisition. Applying image appearance trans-
formations during training introduces a diversity in image contrasts, prevents
overfitting and focuses the model optimization toward the fundamental geometry
and shape of the target tissue.

We select a set of six contrast transformations per image, each fed into a
separate encoding path during training of the late fusion model. First, we match
the intensities of images to those representative of each scanner vendor by utilizing
histogram standardization [142]. To that end, we generate a standardized set
of image histogram landmarks per vendor, used as a reference for matching the
histograms of each image at both training and testing time. Next, we apply Total
Variation (TV) based denoising [143] to discard high frequency image components
and emphasize tissue shape in both training and testing images. The scale of the
TV filter is controlled by changing the smoothing parameter α, where α ∈ [0.1, 15].
To additionally emphasize tissue edges and flatten the image, while retaining the
general appearance, we apply a combination of solarization and posterization.
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Figure 6.3: Examples of contrast-transformed SA and LA training images per
vendor (Philips, GE and Siemens). Transformations applied include: (a) histogram
standardization to GE images, (b) histogram standardization to Philips images,
(c) histogram standardization to Siemens images, (d) a Laplacian operator, (e) a
combination of solarization and posterization and (f) TV-based filtering.

Finally, we calculate the Laplacian of the image, to highlight the regions of rapid
intensity changes and outline the shapes of major objects in the image. The effect
of each transformation can be observed in Figure 6.3, resulting in a sequence of
six augmented images.
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Figure 6.4: Late fusion multi-encoder U-Net proposed in this work, used for the
segmentation of LA and SA MR images. Dotted lines represent some of the inter-
and intra-stream dense connections applied at each layer. At both training and
testing time, the network processes 6 transformed variations of the input image,
shown at the top of the figure, to produce the final segmentation LA and SA
segmentation maps.

Network Architecture

Most existing CNN techniques targeting robustness across multi-site and multi-
vendor images typically employ a diverse set of transformation methods on the
available data. These techniques usually follow an early-fusion strategy, inte-
grating information extracted from various data transformations from the original
space of low-level features, merged at the input of the network. Similar approaches
have also been proposed for applications utilizing multi-modal imaging data [144–
146]. However, research has shown that the detection of inter-relations between the
low-level features of different modalities is a challenging process, particularly due
to the non-linear nature of these relationships and different statistical properties
these modalities exhibit [147,148].

Instead of simply combining multi-modal data using early fusion, recent meth-
ods propose deep architectures to effectively fuse higher-level information from
different modalities (late fusion), with the assumption that the extracted high-
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level representations are more complementary to each other [149–152]. Inspired
by such late fusion approaches, we modify the nnU-net [40] architecture to include
multiple encoder layers processing each transformed image fed at the input in
a separate path. The extracted features by each encoder are then fused at the
bottleneck, allowing the network to learn complementary information between
different transformations of each image and a better representation of their inter-
relationships.

Furthermore, we extend the standard convolutional layers into a convolutional
block, consisting of two convolutional and linear units, with batch normalization
(BN) applied between each convolution and leaky rectified linear unit (ReLU). We
use a short residual connection to sum the input at each covolutional block with
the output coming from the second convolutional layer, followed by leaky ReLU
to produce an output. Each encoding path consists of five convolutional blocks,
with four max-pooling layers.

To improve the modeling of relationships between different streams and pro-
mote the learning of highly complex, but more discriminative features, we adopt
hyper-dense connections between multiple streams, as proposed in [150, 153, 154].
This helps with information and gradient propagation through the entire net-
work and has a regularizing effect, reducing the risk of overfitting and improving
generalization. As shown in Figure 6.4, the outputs from previous layers across
different streams are concatenated at the input of each subsequent layer per
stream. We additionally shuffle the feature maps from densely connected layers by
concatenating them in a different order per branch and layer, which is shown to
have strong regularizing effects [155]. To illustrate this, let xl denote the output
of the lth layer and Fl the mapping function, such as a convolution layer with a
non-linear activation or a complete convolutional block. Typically, the output of
the lth layer in CNNs is derived by passing the output of the previous layer, xl−1,
through a mapping function:

xl = Fl(xl−1). (6.1)

In a densely connected network, this can be extended to

xl = Fl([xl−1, xl−2, xl−3, . . . , x0]), (6.2)

indicating that all previous feature outputs are concatenated in a feed-forward
fashion. By introducing inter-stream hyper-dense connections and feature shuf-
fling, the output of the lth layer in a given stream s, xs

l , where we consider two
streams only, can be defined as

xs
l = F s

l

(
ϕs

l

(
x1

l−1, x2
l−1, x1

l−2, x2
l−2, . . . , x1

0, x2
0
))

, (6.3)

where ϕs
l represents a feature map permutation function. Thus, the output of the

lth layers in a two-stream network can be represented as

x1
l = F 1

l ([x1
l−1, x2

l−1, x1
l−2, x2

l−2, . . . , x1
0, x2

0])
x2
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l−1, x2
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l−2, . . . , x2

0, x1
0]).

(6.4)
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Training Procedure

All SA and LA images used for training are first resampled to a median pixel
spacing of 1.25×1.25×10mm3 and a spatial resolution of 1.25×1.25, respectively.
This is followed by a 98th percentile normalization to an intensity range from [0, 1].
All training images are further cropped to reduce the FOV to the region of interest
(heart), as described in Section 6.2.3, while the heart region detection module is
used at inference time. This results in all SA and LA images cropped to the size
of 128 × 128 voxels and 176 × 176 voxels, respectively. Finally, all images are
processed to form a set of six different contrast-transformed images (see Section
6.2.6), at both training and testing time.

After pre-processing, each encoding path is fed with batches of 60 128 × 128
images for training the SA segmentation model and batches of 20 176×176 images
for the LA model. To further increase robustness during training, we employ data
augmentation in the form of random vertical and horizontal flips (p = 0.5), random
rotation by integer multiples of π

2 (p = 0.5), random scaling with a scale factor
of s ∈ [0.8, 1.2] (p=0.2), mirroring (p = 0.3) and random elastic deformations
(p = 0.3). All augmentations are applied on the fly during training.

To train the network, we use a weighted sum of the categorical cross-entropy
and Dice loss. We employ Adam optimizer to train the proposed model, with an
initial learning rate of 1 × 10−4 and a weight decay of 5 × e−5. The training of
all models converges in 500 epochs, where the initial learning rate is reduced by
a factor of 5 if the validation loss does not improve by at least 5 × 10−3 for the
last 50 epochs. We apply early stopping on the validation set and select the model
with the highest accuracy, to avoid overfitting. We train each model (LA and SA)
using a five-fold cross-validation on the training set and use them as an ensemble
to produce final predictions on the validation and test sets. The implementation of
the model was done in Pytorch and all experiments were performed on an Nvidia
TITAN XP GPU with 12 GBs of RAM.

Post-processing

We perform a connected component analysis on the predicted labels and remove all
but the largest connected component per class, which handles most false positive
predictions. Since test images are both resampled and cropped, we first restore the
original size using the cropping parameters predicted by a heart region detection
module and perform bilinear upsampling to recover the original resolution.

6.3 Experiments

Experiment setup: We train the proposed pipeline on all images provided as a
part of the M&Ms-2 training data, consisting of 70, 64 and 26 studies acquired
from Siemens, Philips and GE scanners, respectively, and augment the training
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set with synthetic images generated using the method described in Section 6.2.4.
All studies consist of LA and SA images, at both end-diastolic and end-systolic
phases, whereby we train two separate networks per image view (LA vs. SA
images). The segmentation performance of the proposed pipeline is compared
to the baseline model, which is a single-channel nnU-Net [40] combined with
heart region detection module. The model is trained on all available real training
images from the dataset in a 5-fold cross-validation setup, using the standard
augmentation set-up as proposed in [40], without any additional synthetic images.

Overall analysis: The obtained results are evaluated on the unseen test set,
containing images acquired across all 3 scanners that have not been previously
utilized for the training of any pipeline component. We assess the performance
both qualitatively and quantitatively, in terms of standard metrics, such as the
Dice score and Hausdorff distance. This is further supported by deriving clinical
indicators, such as ventricular volumes and ejection fraction to further assess the
benefits of the proposed approach. Detailed discussion is provided in Section 6.4.2.

Analysis per pathology: Since the major focus of this work is accurate
segmentation of cardiac tissue in patients affected by geometrical and textual
complexities appearing due to cardiac pathology, we evaluate the proposed pipeline
across different diseases available in the test set. In total, we report the results on
160 patient studies, grouped per disease, as well as the normal subjects (seen in
Table 6.1), for both SA and LA images, available in Section 6.4.3.

We perform additional evaluation on out-of-domain data, namely the short-
axis ACDC and M&Ms-1 challenge data (Supplementary Material 6.6) to study the
robustness of the proposed method. Detailed results are discussed in Section 6.4.4.
Finally, to study the impact of different pipeline components on segmentation
performance, we conduct an ablation experiment by removing one or several
elements of the proposed method. All models are evaluated across the whole test
set in terms of the Dice score for both SA and LA images, with results available
in Section 6.4.5.

6.4 Results

6.4.1 Image Synthesis Results

As discussed in Section 6.2.5, we balance out the number of outlier and normal
cases in the final synthetic data by applying a different number of deformations (by
adding Gaussian noise to the latent space) on each group. Randomly generated
examples from each group are shown in Figure 6.5.

Figure 6.66.6 shows the RV and LV volumes at ED and ES phases for the real
and synthetic data distribution to inspect how the synthetic population changes
the heart cavity distribution of subjects. Each subject is represented as a point
with different shape and color for its corresponding scanner vendor. We can
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Figure 6.5: Random synthetic examples for outlier and normal cases with
corresponding labels, stratified into different scanner vendors for short-axis slices.

observe a gap between subjects in the real data distribution (indicated with black
oval) that is filled with generated subjects in the synthetic data distribution as
a result of deforming labels and synthesizing more subjects for each real subject.
Moreover, the number of samples near the mean of the distribution are increased,
resulting in a densely populated area covered by synthetic subjects with normal
ranges of ventricular volumes.

Table 6.2: Segmentation performance comparison between the baseline and the
proposed model in this work, evaluated on short-axis (SA) and long-axis (LA) test
images, across all cardiac tissues. Numbers listed in the table are the means and
standard deviations of Dice (DSC) and Hausdorff Distance (HD) scores. DSC and
HD values indicated in bold are those which are significantly higher compared to
the baseline performance, according to the Wilcoxon signed-rank test for p<0.01.

View Method Dice HD
LV MYO RV LV MYO RV

SA Baseline 0.941 (0.05) 0.881 (0.06) 0.923 (0.07) 9.36 (9.22) 13.93 (12.76) 11.71 (10.84)
Proposed 0.959 (0.02) 0.907 (0.04) 0.938 (0.03) 6.42 (4.38) 9.37 (5.88) 8.62 (6.07)

LA Baseline 0.947 (0.07) 0.871 (0.08) 0.902 (0.08) 5.04 (4.87) 7.42 (7.21) 7.78 (7.18)
Proposed 0.958 (0.03) 0.901 (0.03) 0.924 (0.04) 4.07 (2.09) 5.27 (3.31) 5.81 (3.42)
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Figure 6.6: Distribution of the RV and LV volumes at ED and ES for real and
synthetic data. Each subject is represented as a marker (with different colors and
shapes indicating the corresponding scanner vendor).

6.4.2 Overall Segmentation Results

Table 6.2 shows the quantitative results in terms of Dice and HD scores obtained
by the proposed pipeline compared to the baseline model, across SA and LA
images available in the test set. The obtained results suggest significant improve-
ments in segmentation performance across most tissues, except for the LV in LA
images, which we ascribe to relative consistency of LV shape over the long-axis
view. However, visual observation suggests improvements in patients with dilated
left ventricle (LVD) and hypertrophic cardiomyopathy (HCM), which both cause
changes in LV shape and appearance. Additional observation of score distribution,
depicted in Figure 6.7, suggests a significant reduction in the number of outlier
predictions by the proposed approach across both SA and LA views.

This has a particular impact on the segmentation of the right-ventricular (RV)
blood-pool and myocardium (MYO), whereby visual observation of delineations
implies that the existing outliers predicted using the baseline mostly relate to false
positive predictions, specifically in relation to over-estimation of both the LV and
RV blood-pool, which further causes the under-segmentation of the myocardium.

Further inspection suggests that over-segmentation mainly occurs in the basal
region of the heart, whereby the baseline model falsely predicts the presence of
the RV and other tissues, particularly at the boundary of the pulmonary artery
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(a) 

SA

LA

(b) 

Figure 6.7: Segmentation performance of the proposed and baseline models on
(a) SA and (LA) images available in the test set, across three cardiac tissues (LV,
MYO and RV). Performance is reported in terms of Dice and Hausdorff distance
(HD) scores.

and the right atrium. Under-segmentation by the baseline commonly occurs at
the apex of the heart, where endocardium appears smaller and tissue boundaries
are less well-defined. The presence of dense papillary muscles at the apex often
causes further difficulties for accurate segmentation. The observations obtained by
visual inspection are confirmed by quantitative evaluation performed across heart
regions, shown in Figure 6.8.

Compared to mid-ventricular slices there is an evident performance drop around
both the base and the apex of the heart, which is noticeably improved by the
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Figure 6.8: Segmentation performance of proposed and baseline models in
SA images across basal, mid-ventricular and apical heart regions, calculated per
cardiac tissue.

proposed approach. We hypothesize the improvement largely stems from augmen-
tation with synthetic data, where we focus on including a vast array of examples
with variable appearance of tissues in the basal and apical regions of the heart, as
well as simulating the effects of heart pathology on cardiac tissue appearance and
the presence of artifacts. However, a moderate performance drop when segmenting
both ends of the heart compared to the mid-ventricular region, obtained by the
proposed approach, suggests that under- and over-segmentation at the base and
the apex of the heart is still not a completely resolved problem.

To gain more insight into the value and importance of outlier reduction achieved
by the proposed segmentation method, we evaluate three automatically derived
clinical parameters with reference to manually derived ones using the available
ground truth segmentation masks. Namely, we derive the RV (Figure 6.9) and
LV (Figure 6.10) end-diastolic (EDV) and end-systolic (ESV) volumes, as well as
the ejection fraction (EF) from segmentations obtained by both the proposed and
baseline model across the entire test set.

Correlation plots of baseline and proposed ED and ES RV volumes in Figure
6.9 show significant improvements in both EDV and ESV correlation acquired
from the proposed method, which leads to better agreement between manual and
automatically quantified EF compared to the baseline. Similar effects are observed
in Figure 6.10 for all three clinical parameters related to the LV. These results can
largely be attributed to a smaller number of outlier predictions, which in turn
decrease the difference between the calculated ED and ES volumes compared to
those derived from ground-truth labels. Moreover, the remaining outliers are still
relatively close to the acceptable range of deviation, which reduces their overall
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Figure 6.9: Correlation and Bland-Altman (rightmost) plots of right ventricular
(RV) functional parameters generated from manual and automatically predicted
segmentation masks using the baseline (first row) and proposed (second row)
models.

impact on calculated ED and ES volumes, as well as the ejection fraction.

6.4.3 Analysis Per Pathology

To gain additional insight into the performance of the segmentation methods
analyzed in this study, we stratify the quantitative analysis per pathology, as
shown in Figure 6.11. Figure 6.11 depicts Dice scores achieved by the baseline and
proposed methods, extracted per tissue across SA images.

Overall, we note consistent improvements in segmentation performance across
all tissue, with more prominent gains in the case of myocardium (MYO) and
right-ventricular (RV) blood-pool segmentation. In fact, statistically significant
improvements in MYO segmentation, according to the paired Wilcoxon signed-
rank test (p < 0.01), are obtained for SA cases undergoing defects related to
arrhythmogenic cardiomyopathy (ARR), tetrology of fallot (FALL), dilated left
ventricle (LVD), dilated right ventricle (RVD), tricuspidal regurgitation (TRI),
as well as on healthy patients (NOR). Likewise, statistically significant increase in
Dice scores for RV segmentation are observed for patients suffering from inter-atrial
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Figure 6.10: Correlation and Bland-Altman (rightmost) plots of left ventricular
(LV) functional parameters generated from manual and automatically predicted
segmentation masks using the baseline (first row) and proposed (second row)
models.

communication (CIA), tetrology of fallot (FALL), dilated left ventricle (LVD)
and dilated right ventricle (RVD). However, segmentation over LV shows only
slight improvements, mostly related to outlier reduction, with statistically signifant
differences observed for patients with defects in tetrology of fallot (FALL), dilated
left ventricle (LVD), as well as dilated right ventricle (RVD).

The scores obtained on RVD and TRI cases are of a particular interest, as these
are completely unseen during training, suggesting that the proposed method has
the ability to compensate for unseen diseases. The improvement in segmentation
of patients undergoing RVD and TRI further leads to enhanced derivation of
clinical parameters, as seen in Figure C.2 and Figure C.3 for both the LV and
RV, respectively (Supplementary Material 6.6). Similar trends are observed in LA
images (see Figure C.1) across RV And MYO segmentation, with more moderate
improvement across the LV.

Figure 6.12 shows some challenging segmentation cases across different patholo-
gies present in the test set for both SA images and their LA counterparts.

Patients undergoing arrhythmogenic cardiomyopathy often exhibit right ven-
tricular dilatation and scarring in the myocardial area. This is commonly reflected
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Figure 6.11: Average segmentation performance of the baseline and proposed
models across SA test images, derived per disease, in terms of Dice score per
tissue.
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Figure 6.12: Qualitative visualization of segmentation results in challenging cases
undergoing different cardiac disease and pathology, outlining the improvement i
segmentation when using the proposed pipeline compared to the baseline. Each
row presents a single patient, where we showcase one SA slice, as well as the
LA view of the heart corresponding to the same patient. Model predictions are
compared to the ground truth, shown in the column marked as GT.
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by difficulties in segmenting both the RV and MYO, as shown in Figure 6.12,
which can be tackled by utilizing the proposed pipeline. Similar can be observed
for patients suffering from interatrial communication defects (CIA), where RV
dilatation is typical. Hypertrophic cardiomyopaty (HCM) is often found in the
middle septum at the midventricular level, as well in the inferior region at the
apical region [156], as shown in Figure 6.12. In these cases, the baseline model
often under-segments the RV, but also struggles with over-segmenting the my-
ocardium. Finally, a dilated right ventricle presents another typical case of under-
segmentation, especially in slices towards the base and apex of the heart. However,
the proposed pipeline shows noticeable improvement in handling such examples.

6.4.4 Evaluation on External Datasets

To demonstrate the robustness of the proposed pipeline, we perform an additional
evaluation on a completely different set of out-of-domain CMR images. These
include data acquired from ACDC [39] and M&Ms-1 [46] challenges, which we use
to directly test both the baseline and the proposed models and report the results
in terms of Dice and Hausdorff distance scores. We do this without additionally
re-training or adapting the models to new data.

A description of both datasets is available in Supplementary Material 6.6. Since
only the training data from the ACDC Challenge dataset is available publicly,
consisting of ED and ES images from 100 subjects, we utilize this as our test
set. However, the evaluation on the M&Ms-1 data is done on the actual test
data provided by the challenge organizers, consisting of 80 ED and ES subjects
(a total of 160 images) from four different vendors. It is important to note that
the evaluation of this experiment is only performed for SA images, since both
challenges do not contain LA data.

While there is an evident domain shift between the ACDC and M&Ms-1 data
compared to the M&Ms-2 data used for the training of the complete pipeline,
we still observe a significant improvement when utilizing the proposed multi-
modal approach and augmenting the training set with synthetic images, as seen
in Table 6.3. A large portion of the ACDC dataset contains pathological cases,
where we observe significant improvements in performance, particularly when
segmenting RV and MYO. However, we hypothesize that additional improvements
in performance could be achieved if the training was adapted to those datasets
specifically, especially the synthesis module, as the current approach is specifically
tailored to M&Ms-2 data.

6.4.5 Ablation Study

We perform an ablation study to understand the value of different pipeline com-
ponents on segmentation performance. Therefore, we train the following models:
(i) U-Net + BB, a regular single encoder nnU-Net with Bounding Box (BB)
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Table 6.3: Segmentation performance comparison between the baseline and
the proposed model in this work, evaluated on short-axis (SA) images acquired
from the M&Ms-1 [46] and ACDC [39] challenges (Supplementary Material 6.6).
The evaluation is performed over all three cardiac tissues, in terms of Dice
and Hausdorff Distance (HD) scores. Values indicated in bold are those which
are significantly higher compared to the baseline performance, according to the
Wilcoxon signed-rank test for p<0.01.

Model Dice HD
LV MYO RV LV MYO RV

M&Ms-1
(n=160)

Baseline 0.908 (0.05) 0.799 (0.05) 0.873 (0.07) 12.04 (8.6) 16.04 (9.1) 13.77 (8.1)
Proposed 0.925 (0.03) 0.821 (0.04) 0.901 (0.04) 7.81 (3.8) 11.34 (5.6) 11.84 (6.2)

ACDC
(n=200)

Baseline 0.955 (0.03) 0.868 (0.03) 0.922 (0.05) 7.69 (5.2) 9.51 (7.5) 16.49 (15.9)
Proposed 0.962 (0.01) 0.891 (0.02) 0.934 (0.03) 5.62 (3.3) 7.61 (5.2) 11.45 (4.9)

detection, corresponding to the baseline model; (ii) U-Net + BB+ IT, a model
similar to (i) but augmented with the same set of intensity transformations (IT) as
in the late-fusion model; (iii) U-Net + BB + IT + Synth, a model similar to
(ii) with added synthetic data (Synth) at training time, generated as described in
Section 6.2.4; (iv) LF-U-Net + BB, a dense late fusion (LF) approach combined
with bounding box detection and (v) LF-U-Net + BB + Synth, a dense
late fusion approach proposed in this chapter. All models are trained using the
procedure in Section 6.2.6.

The obtained results across the entire M&Ms-2 test data, for both SA and
LA images, are outlined in Table 6.4. We start observing significant improve-
ments in performance with the addition of synthetic images, generally related to
patients with dilated right and left ventricles, hypertrophic cardiomyopathy and
arrhythmogenic cardiomyopathy. However, we do not observe any improvement in
segmentation among healthy patients, which we hypothesize is due to the fact we
focus the augmentation process on diseased patients and abnormal heart shapes.
On the other hand, introducing a late-fusion approach, combined with hyper-dense
connections, demonstrates some performance improvement in those cases. In LA
images, the addition of synthetic images has a significant effect on right ventricle
segmentation, where visual observation suggests improvements on patients with
severe changes in RV shape due to underlying pathologies.

The late fusion model used in this study leads to more refined segmenta-
tions of the LV and MYO in SA and LA images, respectively with consistent
improvements in images with visible artifacts, as well as in cases with low contrast
between tissues. Adding synthetic data to the late-fusion model (LF-U-Net
+ BB + Synth) yields further improvements, mostly around the RV area,
as well as the myocardium. Augmentation with synthetic data tends to reduce
the amount of variation between the predictions, leading to better reliability
and stability of segmentations. This is particularly manifested when evaluating
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the trained models across patients with pathologies unseen during training, such
as the tricuspidal regurgitation (TRI) and the dilated right ventricle. Similar
results can be observed across LA images, where the proposed model tackles
both under- and over-segmentation across all tissues, noticeable in single-encoder
models. This is particularly noticeable when observing the delinations over the
LV and MYO. Largest improvements in performance are obtained across the
patients suffering from dilated RV and TRI - the unseen cases during training,
suggesting that both synthetic data and better modeling of relationships between
differently transformed images aid with tackling the changes in both heart shape
and appearance due to the presence of pathological tissue.

Table 6.4: Segmentation performance comparison between the baseline and the
proposed model in this work, as well as the models trained with different elements
of the proposed pipeline, according to the ablation experiment described in Section
6.4.5. Each model is evaluated on original short-axis (SA) and long-axis (LA) test
images, across all cardiac tissues. Numbers listed in the table are the means and
standard deviations of Dice score. Dice values indicated in bold are those which
are significantly higher compared to the baseline performance, according to the
Wilcoxon signed-rank test for p<0.01.

Method Short-Axis (SA) Long-Axis (LA)
LV MYO RV LV MYO RV

U-Net + BB (Baseline) 0.941 (0.05) 0.881 (0.06) 0.923 (0.07) 0.947 (0.07) 0.871 (0.08) 0.902 (0.08)
U-Net + BB + IT 0.945 (0.04) 0.886 (0.05) 0.925 (0.05) 0.949 (0.07) 0.874 (0.06) 0.907 (0.07)
U-Net + BB + IT + Syn 0.950 (0.04) 0.891 (0.06) 0.931 (0.04) 0.951 (0.06) 0.879 (0.05) 0.911 (0.08)
LF U-Net + BB 0.953 (0.03) 0.898 (0.05) 0.934 (0.05) 0.954 (0.05) 0.885 (0.04) 0.919 (0.06)
LF U-Net + BB + Syn (Proposed) 0.959 (0.02) 0.907 (0.04) 0.938 (0.03) 0.958 (0.03) 0.901 (0.03) 0.924 (0.04)
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6.5 Discussion

In this work, we propose a pipeline designed to tackle the segmentation of patho-
logical CMR images across multiple views (SA and LA) and sources. We provide
a comprehensive analysis of the proposed pipeline and compare its performance to
the baseline model, widely used in the literature (nnU-Net). The obtained results
demonstrate the ability of the proposed pipeline to reduce the performance gap
between the outlier cases, riddled by artifacts and shape deformation caused by
underlying pathologies, and cases similar to those available at training time.

While outlier cases are typical and commonly found across many medical
imaging tasks, they are more prominent in pathological data, owing to limitations
in representation and number of cases. This particularly affects data-hungry deep
learning algorithms, known to fail on cases poorly represented during training.
However, the method proposed in this work can tackle such cases more effectively,
leading to a notable decrease in the number of outliers during segmentation. This
in turn has a significant impact on not only the average segmentation performance,
but also the derivation of clinically relevant metrics characterizing heart function.
In fact, we demonstrate significant improvements in levels of agreement and bias
reduction for the left- and right-ventricular ejection fraction across all cases avail-
able at inference time. Outlier reduction has shown to be consistent throughout
all pathologies and cardiac tissues. Further investigation suggests that outliers
occurring in this dataset belong to images with large differences in appearance and
contrast compared to the majority of images available at training time, as well as
those containing higher levels of noise and artifacts. However, cases with severe
tissue deformation and occlusion due to the presence of pathologies represent the
most challenging cases during segmentation, largely addressed by the proposed
approach.

We further show that using conditional GANs holds a lot of promise for the
generation of missing data and addressing data scarcity, which is particularly
emphasized when dealing with pathological patients. In fact, careful generation
of images varying in contrast and tailored to different cardiac diseases can signifi-
cantly improve model generalization and reduce class imbalance, common in reg-
ular datasets that are skewed towards non-pathological images. We demonstrate
the impact of the generated synthetic images on the distribution of heart cavity
samples in the training set, which we hypothesize increases the representation
of challenging cases during training and leads to a more stable segmentation
performance, even in the presence of unseen diseases. The proposed synthesis
approach can be adapted to any type of scarce data, such as rare pathologies,
whereby only a small subset of such data is needed for training a synthesis module
that can expand the training set with artificial patients of varying appearance.

Although data augmentation with more extreme intensity transformations has
recently shown to positively influence the regularization and generalization of
DL-based methods, as well as reduce overfitting, we show that combining such
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transformations using a multi-path approach aids the network with learning com-
plementary information and fosters better data representation, enhancing the
networks’ discriminative power. Moreover, enhancing the flow of information
between the multi-path layers through dense connections shows further benefits
in obtaining a more accurate segmentation. Visual observation suggests that this
improvement is particularly related to the segmentation of small structures (such
as the tissue at the apex of the heart) or at region boundaries, where single encoder
networks tend to struggle at differentiating between tissues.

Performance analysis across different pathologies in both SA and LA images
reveals additional insights about the behavior of different models evaluated in
this study. We observe that baseline models are prone to over-segmentation,
particularly in the basal regions, where they falsely predict the presence of either
the RV or the whole heart. This is usually caused by blood movement-related
artifacts, low tissue contrast or occlusion due to specific diseased tissue. Additional
difficulties appear in cases where the myocardial muscle does not completely
enclose the blood pool and exhibits variability in shape, becoming non-circular.
Furthermore, we note that the proposed method tends to exhibit more significant
improvements in terms of the HD scores, which is primarily the result of outlier
reduction. Visual observation suggests that cases exhibiting high HD scores when
evaluated with a baseline model, contain false positive predictions in the areas
outside of the heart, often consisting of tissues similar in appearance and shape
to cardiac tissue. Additional errors contributing to segmentation inaccuracies
obtained by the baseline include areas with weak or missing edges, artifacts and
low signal-to-noise ratio.

In general, we note considerable improvements using the proposed method
across most pathological cases, with better adaptation to unseen cases. The
obtained results are comparable and even outperform those reported in the M&Ms-
2 challenge, ranging from 0.83 to 0.93 and 0.8 to 0.92 in Dice score for RV segmen-
tation across SA and LA images, respectively2 [157–170]. Moreover, augmenting
the training set with highly diverse data and introducing a more efficient way to
extract meaningful features from data leads to improved performance on out-of-
domain datasets (Section 6.4.4). This shows that despite training the model on a
completely different set of images, the proposed modules aid in adaptation to the
existing domain shift that commonly occurs between different datasets. Finally, we
demonstrate the effects on performance when one or more modules are removed
from the proposed pipeline and identify the largest sources of improvement in
the ablation study (see Section 6.4.5). We demonstrate that each element of
the proposed pipeline adds value to the overall segmentation improvement, but
significant differences start appearing when utilizing augmentation with synthetic
data, as well as the late fusion approach with dense connections.

2Evaluation over LV and MYO is not included in the evaluation procedure of the M&Ms-2
challenge and is not reported by any participants.
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6.5.1 Limitations and Future Work
Despite the reported improvement in segmentation performance and outlier re-
duction, the proposed model still has several limitations. The performance drop
on ES slices remains higher compared to the ED slices, which further affects the
calculation of clinical parameters, such as the ejection fraction. Moreover, basal
regions are prone to under-segmentation, followed by a drop in accuracy around the
apex of the heart, mainly due to its small size compared to the rest of the cavity.
While we manage to partly handle some of these issues, they consistently remain
the biggest sources of errors, which is in agreement with findings reported by
similar work in the literature on other datasets. This implies that special attention
should be placed on addressing these regions, which we plan to focus on in future
work. Additionally, the provided LA images could help with extracting the inter-
and intra-view information from the complementary SA and LA images, allowing
for both the localization of the basal plane and possibly better segmentation of
the basal slices. Thus, integration of the proposed modules into a truly multi-view
approach would be one of the main aspects to focus on in our future work.

Furthermore, while we extensively analyze the impact of the proposed pipeline
on a wide array of pathological data with varying sources of acquisition, we would
further benefit from assessing its confidence and identifying possible prediction
uncertainties under difficult settings. In the same line, extending this study on
other open-source datasets, as well as to clinical settings, would allow us to further
identify the necessary points of improvement, particularly when performing the
evaluation on other unseen cardiac pathologies. Although we focus this work on
handling the variation in cardiac tissue shape and appearance in the presence of
various diseases, we note that the segmentation performance on healthy patients
does not show significant improvements. Thus, ensuring that the model generalizes
well to both healthy and diseased tissue is another major focus of our future
experiments.

To balance out the number of pathological and normal cases from the M&Ms-
2 challenge, we identify outlier subjects by calculating the right-ventricle volume
using the ground truth labels and taking into account the mean and standard
deviation values. However, this method for outlier detection may not necessarily
cover all pathological cases available in the dataset, as just the volume may not be
indicative of a cardiac disease. Instead, having access to labels for each pathology,
one can synthesize more subjects for a particular disease in such a way to obtain
a balanced number of different diseases present in the data.
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6.6 Conclusions

In this work, we propose a pipeline including three distinct modules to handle dif-
ferent challenges of multi-vendor and multi-disease cardiac MR images for the task
of increasing the segmentation robustness and outlier reduction. We demonstrate
the ability of the proposed approach to balance the segmentation of outlier cases,
typically related to increased levels of artifacts and shape deformations induced
by the presence of pathologies, with those more commonly represented in the
training set. Synthesizing a diverse training dataset, carefully designed to increase
the variation of cardiac shapes and appearances during training, plays a significant
role in not only boosting the model performance in terms of standard quantitative
metrics, but also in improving the automatically derived clinical metrics denoting
the function of the heart. This in turn leads to improved stability and reliability
of the predictions across both short-axis and long-axis images. Such observations
are additionally confirmed on completely unseen images, extracted from other
publicly available datasets, whereby we observe both outlier reduction and better
adaptation to the presence of the domain shift between datasets. Future work
includes more precise synthesis of pathological cases, conditioned on the pathology
type, as well as utilizing the availability of LA images to inform the positioning of
the basal plane for more accurate segmentation.
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Supplementary Material

Heart Region Detection

As presented in Section 6.8, the first stage of our pipeline is a heart region detection
module, consisting of a regression-based neural network that locates and extracts
the heart in both SA and LA images. Please note that this model is mainly used
at inference (test) time when ground truth labels are not available and need to
be predicted. We use a simple CNN designed for a regression task, where the
output consists of 6 continuous values representing the bounding box surrounding
the heart. The inputs to the network are pre-processed 2D (256 × 256) mid-
cavity SA slices extracted from the training set and all LA slices, respectively.
The proposed CNN consists of five convolutional layers, followed by two fully-
connected layers with a linear activation. Each convolutional layer uses 3 × 3
kernels, followed by a 2 × 2 max-pooling layer. Batch normalization and leaky
ReLU activations are used in each layer, except for the output. Dropout with the
probability of 0.5 is used in the fully connected layers. The network is trained
for 2000 epochs with a batch size of 32 and early stopping (assessed from the
validation accuracy), by minimizing the mean squared error between the computed
and the actual transformation (estimated from the ground-truth) using the Adam
optimizer. We start with an initial learning rate of 0.001, decreased by a factor of
0.5 every 250 epochs. All image dimensions and scaling/displacement parameters
are normalized to generate translations in the range from -1 to 1.

After prediction, all the parameters are de-normalized to reflect the original
image scale. On-the-fly data augmentation is applied to the training images,
consisting of random translation, rotation, scaling, vertical and horizontal flips,
contrast augmentation and addition of noise. At inference time, we again use mid-
cavity slices from the SA test images to obtain the adjustment parameters of the
ROI (not needed for LA). The predicted bounding boxes on mid-cavity slices of
SA images are then propagated through the whole 3D volume, from which these
slices were extracted. This procedure is not applied for LA images, where direct
detection is possible (both ED and ES LA images consist of a single slice only).
The obtained cropped SA and LA images using the predicted bounding box are
post-processed to be of the size 128×128 voxels and 176×176 voxels, respectively.
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External, Out-of-Domain Data Used for Evaluation

To demonstrate the impact of the proposed pipeline on a completely different
set of out-of-domain CMR images, we additionally evaluate the method on data
acquired from ACDC [39]3 and M&Ms-1 challenges [46]. A detailed evaluation and
comparison to the baseline model is provided in Section 6.4.4, while the description
of both testing sets is provided below. Please note that the evaluation is performed
only on SA images, as both of the out-of-domain data-sets do not contain any LA
images.

1. Automated Cardiac Diagnosis Challenge (ACDC):

The ACDC data-set includes end-systolic (ES) and end-diastolic (ED) im-
ages acquired from 150 patients, containing both normal and pathological
subjects. Images are acquired by two scanners with different magnetic
field strengths and contain expert annotations for left ventricle (LV), right
ventricle (RV) blood pool, as well as left ventricular myocardium (MYO).
Out of the 150 subjects (300 ED and ES MR images), 100 are reserved as
a training set, while the remaining are used for testing. The 100 training
subjects are available to download with their respective annotations, while
the annotations belonging to the testing data are not available to public. For
this reason, we select the entire training set, consisting of 100 subjects (200
ED and ER images) for testing in this experiment.

2. Multi-center, multi-vendor and multi-disease cardiac image segmentation chal-
lenge (M&Ms-1) data:

The M&Ms-14 challenge data-set consists of 350 images from a mix of healthy
controls and patients with hyptertrophic and dilated cardiomyopathies. All
patients were scanned in clinical centers across three different countries
(Spain, Germany and Canada) using four different MRI scanner vendors
(Siemens, Philips, General Electric-GE and Canon). The provided train-
ing set contains 150 annotated patient scans from two different scanner
vendors (Philips and Siemens, 75 each) and 25 un-annotated scans from
a third vendor (GE). The in-plane resolution of the training images varies
between 1.18 to 1.72 mm, with slice thickness ranging between 9.2 to 10.0
mm. Annotations have been provided by experienced clinicians at both end-
diastolic and end-systolic phases, including contours for the left (LV) and
right ventricle (RV) blood pools, as well as the left ventricular myocardium

3ACDC data-set can be accessed at https://www.creatis.insa-lyon.fr/Challenge/acdc/
4M&Ms-1 data can be acquired at https://www.ub.edu/mnms/

https://www.creatis.insa-lyon.fr/Challenge/acdc/
https://www.ub.edu/mnms/
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(MYO). This amounts to 300 annotated and 50 un-annotated images, taking
both phases into consideration.
For testing we utilize the additional images provided by the M&Ms challenge
as a separate test-set. These consist of an additional 50 studies from each
of the vendors provided, as well as another 50 studies from a vendor unseen
during training (Canon), with in-plane resolution ranging from 0.68 to 1.8
mm. We refer to different scanner vendors contained in the test set, namely
Philips, Siemens, GE and Canon scanners, as vendors A, B, C and D,
respectively.

Quantitative Analysis and Derived Clinical Param-
eters

To demonstrate the impact of the proposed pipeline on the cardiac tissue segmen-
tation, we evaluate its performance compared to the baseline model across different
pathological cases available in the data-set. The results related to LA images are
shown in Fig. 6.13. In addition, we showcase the impact of outlier reduction on
automatically derived clinical parameters with reference to those derived from the
manually outlined ground truth, across two unseen types of pathologies, which
are not available during training. Figures 6.14 and 6.15 visualize the correlation
and Bland-Altman analysis of left ventricular (LV) and right ventricular functional
parameters, respectively, which include the end-diastolic (EDV) and end-systolic
(ESV) volumes, as well as the ejection fraction (EF) derivation across patients
with dilated right ventricle (RVD) and tricuspidal regurgitation (TRI).

Figure 6.13: Average segmentation performance of the baseline and proposed
models across LA test images, derived per disease, in terms of Dice score per
tissue.
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(a) Dilated Right Ventricle (RVD)

(b) Tricuspidal Regurgitation (TRI)

Figure 6.14: Correlation and Bland-Altman plots of left ventricular (LV)
functional parameters generated from manual and automatically predicted seg-
mentation masks using the baseline and proposed models. LV end-diastolic volume
(EDV), LV end-systolic volume (ESV) and the LV ejection fraction (LV EF)
are derived for patients undergoing (a) dilated right ventricle (RVD) and (b)
tricuspidal regurgitation (TRI).
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(a) Dilated Right Ventricle (RVD)

(b) Tricuspidal Regurgitation (TRI)

Figure 6.15: Correlation and Bland-Altman plots of rigt ventricular (RV)
functional parameters generated from manual and automatically predicted seg-
mentation masks using the baseline and proposed models. RV end-diastolic volume
(EDV), RV end-systolic volume (ESV) and the RV ejection fraction (RV EF)
are derived for patients undergoing (a) dilated right ventricle (RVD) and (b)
tricuspidal regurgitation (TRI).
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CHAPTER7
Simulation to Real Translation

This chapter is based on:
S. Amirrajab, Y. Al Khalil, C. Lorenz, J. Weese, J. Pluim, M. Breeuwer, “sim2real: Cardiac MR
Image Simulation-to-Real Translation via Unsupervised GANs,” ISMRM 2021, in preparation
for a journal publication.

143



144 Chapter 7. Simulation to Real Translation

Abstract

There has been considerable interest in the MR physics-based simulation of a
database of virtual cardiac MR images for the development of deep-learning anal-
ysis networks. However, the employment of such a database is limited or shows
suboptimal performance due to the realism gap, missing textures, and the simpli-
fied appearance of simulated images. In this work we 1) provide image simulation
on virtual XCAT subjects with varying anatomies, and 2) propose sim2real trans-
lation network to improve image realism. Our usability experiments suggest that
sim2real data exhibits a good potential to augment training data and boost the
performance of a segmentation algorithm.
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7.1 Introduction

A cohort of virtual cardiac magnetic resonance images (CMR) can be simulated
to aid the development and adaptation of data-hungry deep-learning (DL) based
medical image analysis methods. Recent studies have shown the effectiveness of
image simulation in the context of training a DL model for CMR image segmen-
tation [21, 171]. Although such models provide accurate anatomical information,
their performance is still suboptimal as a result of the realism gap, missing texture
and simplistic appearance of the simulated images. This holds especially for models
trained completely on simulated images and evaluated on real ones. Generative
adversarial networks (GANs) [2], on the other hand, promise to synthesize realistic
examples, as demonstrated by applications for multi-modal medical image transla-
tion [13,172,173]. However, GAN-generated images may not necessarily represent
plausible anatomy.

The purpose of the current research is to reconcile the two worlds of simulation
and synthesis, as defined in [1], and take advantage of recent developments in the
field of computer vision to reduce the realism gap between simulated and real data
using GANs for unpaired/unsupervised style transfer. The contributions are two-
fold: 1) Physics-based simulation of cardiac MR images on a population of XCAT
subjects 2) GANs-based image-to-image translation for style (texture) transfer
from real images. The framework is named sim2real translation.

7.2 Material and Method

The 4D XCAT phantom [7] is utilized as the basis of the anatomical model for
creating virtual subjects by carefully adjusting available parameters for altering the
geometry of the human anatomy. We employ our in-house CMR image simulation
framework based on the analytical Bloch equations to generate varying image
contrast on the labels of the XCAT virtual subjects [21].

An unsupervised GAN model based on contrastive learning, known as CUT
[174], is used for the task of unpaired translation between the real and the simu-
lated images to transfer the realistic style (texture) from real images to simulated
ones while preserving the anatomical information (content). Contrastive learning
encourages encoded features of two patches from the same location in the real
and translated images to be similar yet different to other patches. Compared to
other unpaired translation frameworks such as CycleGAN [65], CUT is a one-sided
network with a much lighter generator architecture hence requiring few data for
training. The content of the simulated image is preserved through a multilayer
patch-wise contrastive loss added to the adversarial loss, as shown in Figure 7.1.

The M&Ms challenge data [46] are used as the source of real cardiac MR
images. To explores the effects of multi-vendor data, we utilize a subset of the
data consisting of 150 subjects with a mix of healthy controls and patients with a
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Figure 7.1: simulation-to-real (sim2real) translation using contrastive learning
for unpaired translation model proposed in [14]. The style translation in achieved
by the discriminator loss, while the content of anatomical information in the
simulated data is preserved by the multilayer, patch-wise contrastive loss

variety of heart conditions scanned using Siemens (Vendor A) and Philips (Vendor
B). We extract four mid-ventricular slices at end diastolic (ED) and end systolic
(ES) phases for each subject. All subjects are resized, centre cropped to the size
of 128 x 126, and normalized to the range of [0, 1]. The same pre-processing is
applied on the simulated images, despite the fact we use the available ground truth
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labels of the simulated data to find a bounding box around the heart and crop
accordingly instead of centre cropping.

Two identical sim2real models are trained using the data from vendor A and
vendor B (sim2real A, and sim2real B) to investigate the network’s ability to
transfer vendor-specific appearance images on simulated ones. We calculate the
widely-used Fréchet Inception Distance (FID) score [175] between feature vectors
calculated for real and translated images to evaluate the similarity between the
simulated database and its respective real data, before and after translation.

Additionally, we evaluate the usefulness of our sim2real data in aiding a DL
segmentation model for the task of cardiac segmentation. We utilize a nnUNet
[40], trained to segment the left ventricle (LV), right ventricle (RV), and the left
ventricular myocardium (MYO). First, we train a model using 150 sim2real images
with the style of vendors A and B and compare it to a model trained on 150 real
images. We additionally train a model with a mixed set of real and sim2real data
to observe the applicability of generated data for data augmentation.

Figure 7.2: End-diastolic and end-systolic volume of left ventricle for simulated
virtual subjects and two examples of cardiac MR image simulation.

7.3 Results

Two examples of simulated images and statistics of the XCAT virtual subjects’
distribution in terms of left ventricular volumes are depicted in Figure 7.2.
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Figure 7.3: Fréchet inception distance (FID) score, which lower value means
more similarity, between simulated and real data from vendor A (FID-> real A),
simulated and real data from vendor B (FID-> real B), style transfer from vendor A
on simulated denoted as sim2real A, and style transfer from vendor B on simulated
denoted as sim2real B. One real example for each domain is also shown.

The FID score is computed between the simulated data, sim2real A data,
sim2real B data and the data from vendor A and vendor B. The lower value
for the FID score suggests more realistically generated images and thus higher
similar feature statistics to real database. The results are shown in Figure 7.3. As
expected, the original simulated data has a high FID score on both real A and
real B data. Generally, the sim2real model substantially reduces the FID between
the simulated data and real images, indicating improvement in image realism.
Moreover, the vendor-specific imaging features are captured by the network and
transferred to the simulated images. One real example from each vendor and each
sim2real translation is shown for visual comparison.

The segmentation performance of three different models can be observed in
Table 7.1, presenting the evaluation of all models on a separate test set from the
M&Ms challenge. The results suggest that the model trained with sim2real images
already adapts well to real data, exhibiting a slight drop in performance compared
to the model trained with real data. Additionally, we observe that augmenting
the training with sim2real data has a positive impact on segmentation accuracy
(Dice score), particularly for the LV.
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Table 7.1: Segmentation performance of 2D nnUNet models trained with only
simulated data (row 1), only real data (row 2) and a mix of real and simulated
data (row 3), where N indicates the total number of images used for training. All
models are evaluated on the unseen test set from vendors A and B in terms of the
average Dice score and Hausdorff Distance (HD) per three cardiac tissues. Results
outlined in red indicate the best performing model per tissue.

Training Testing
Vendor A Vendor B

Real Simulated LV RV MYO LV RV MYO
Dice HD Dice HD Dice HD Dice HD Dice HD Dice HD

N/A N=160 0.887 9.25 0.851 12.45 0.801 14.72 0.871 10.38 0.861 11.21 0.831 12.11
N=160 N/A 0.901 8.19 0.878 9.35 0.863 9.88 0.893 9.31 0.872 10.67 0.849 9.76
N=160 N=160 0.915 7.85 0.882 10.21 0.872 12.32 0.911 7.28 0.874 10.85 0.851 10.21

7.4 Discussion and Conclusion

In this work, we created a database of virtual cardiac MR images simulated on the
XCAT anatomical phantom and investigated the effectiveness of an unsupervised
GAN for the task of simulation-to-real translation, named sim2real. We attempted
to reduce the realism gap between the simplified image simulation and complex re-
alistic image textures. Our sim2real model could learn the vendor-specific imaging
features and map them onto the simulated images, resulting in reduction of the
FID scores which can be attributed to more similarity between the simulated and
real databases. Our usability experiments suggested that sim2real data exhibits a
good potential to augment real training data, particularly in scenarios where data
is scarce.
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There is an ever growing need for high-quality medical data with annotations
to adopt data-hungry state-of-the-art supervised deep neural networks for auto-
mated medical image analysis. Collecting, annotating, and sharing medical data
with desired quality and variation may not always be feasible yet essential for
development of such methods. To facilitate the development of such methods, the
main theme of this research was to investigate and propose different solutions for
the generation of large quantities of artificial images with ground truth labels.

In this thesis, we developed several frameworks and pipelines for cardiac mag-
netic resonance image simulation and synthesis for the purpose of generating
substantial numbers of images with corresponding labels that can be utilized
for developing automated image segmentation methods based on deep neural
networks.

In the physics-driven image simulation category, a flexible image sim-
ulation framework grounded on the physics of magnetic resonance imaging was
developed in Chapter 2 for simulating realistic images with variable anatomical
and imaging characteristics. We built upon and advanced previous models for
human anatomies and image simulation. The simulation framework included three
main modules for 1) creating anatomical models based on the XCAT phantom,
2) assigning tissue properties to more that 10 tissue types and organs, and 3)
optimizing simulated sequences to generate images with varying contrast. The
benefit of the simulated database was shown for training a deep neural network
for cardiac image segmentation, suggesting substantial performance increase when
the simulated data is added to the real data, as well as retaining the baseline
performance when only 45% of the real data is used and the rest is compensated
with the simulated images.

While the framework was designed to generate cine cardiac images, we demon-
strated that with a small modification of the sequence module in the framework,
late-gadolinium enhanced (LGE) imaging could be performed for the application
of simulating a subject with myocardial scars with different levels of respiratory
motion artifacts at multiple resolutions. As discussed in reference [50], we investi-
gated the effects of slice misalignment artifacts on image-based electrophysiological
(EP) modeling of the heart with a defined myocardial scar. The XCAT anatomical
model was extended with a customized cylindrical shaped scar placed around the
right coronary artery inside the myocardium of the left ventricle. The simulation
pipeline was extended to perform LGE CMR experiments to generated images
with and without respiratory motion artifacts to estimate the effects of artifacts
on the accuracy of EP outcome.

In the data-driven image synthesis category, a framework was developed
in Chapter 3, grounded on recent conditional generative adversarial networks for
label-to-image translation for generating high-quality and diverse cine cardiac
magnetic resonance images. The synthesis framework consisted of 1) a multi-
tissue segmentation module trained using the pairs of simulated images with
corresponding labels generated using the framework described in Chapter 2, and
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2) a conditional synthesis module to learn the translation from multi-tissue labels
to realistic images, where the anatomical content is preserved through conditional
normalization layers. We evaluated different design choices of the framework such
as the benefit of using multi-tissue labels and its positive effects on the quality of
the synthetic images compared to utilizing cavity-tissue labels. Our experiments
on the usability of the synthetic data suggested that although there is a drop
in performance when the real data is replaced with synthetic counterparts, we
observed a substantial increase in model performance when we augment the real
data with simulated ones, achieving a maximum increase of 4% for Dice score
(higher better) and a maximum reduction of 40% for Hausdorff Distance score
(lower better).

Label deformation was found to be an important aspect of label-conditional
image synthesis to introduce anatomical variations in the synthetic data. We
applied image-based random elastic deformations to change the heart geometry
during synthesis for reference [94]. However, such deformations resulted in gener-
ating images with anatomically implausible shapes, which decreased the realism
of the images, despite being useful for training. For synthesizing images with
plausible heart shapes, we developed a latent space-based manipulation method
using variational auto-encoders in Chapter 4. We devised different strategies to
perform interpolation in the latent space of a trained model to generate virtual
subjects with a target heart pathology that affects the heart geometry. We demon-
strated that data augmentation with with our approach could provide a solution
to diversify and enrich an available database of cardiac MR images, resulting
in significant improvements in model performance and generalization for cardiac
segmentation of subjects with unseen heart diseases.

To reconcile the two worlds of simulation and synthesis, in a short
feasibility study described in Chapter 7, we attempted to reduce the realism gap
between simulated and real data using GANs for unpaired/unsupervised style
transfer and proposed a framework named sim2real translation.

Other ways to deal with limited data; The presented work throughout this
thesis concerned generating artificial data to deal with medical data scarcity. There
are other approaches to deal with insufficient training including transfer-learning
[176, 177], domain adaptation [178] and data augmentation [179]. While transfer-
learning in the form of fine-tuning a portion of pre-trained networks has shown
significant improvements in the tasks involving natural images, it is limited in the
medical imaging domain due to the lack of properly pre-trained models developed
on large sets of medical data [180]. Domain adaptation addresses the development
of models that can generalize to known target domains whose annotations are
unknown or limited during training. However, the assumption is that examples
from the target domain are available, which is not often the case with medical data
[180, 181]. On the other hand, observed domain shift properties can be imitated
by applying a variety of data augmentation approaches in the image space, which
has been shown across many fields [133,135,182].
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Simulation versus synthesis; Both simulation and synthesis have advan-
tages and disadvantages. For instance, in image simulation we have more control
over the image generation process such that we can modify different parameters
at different levels to change the anatomy, tissue contrast, noise level, and imag-
ing resolution. The results of image simulation, however, are less realistic than
the outcome of synthesis, with rather simplified appearances and lack of highly-
detailed textures in simulation. Synthesis results are visually more realistic, they
resemble features of training data, while less control over the generation of different
contrasts and less accurate ground truth labels since they depend on the expert
delineations.

In the context of data augmentation, data-driven synthesis approaches can
generate data with characteristics of the training images, which require no further
processing to add them to the training, whereas substantial data preparation is
needed on simulated images due to the gap between simulated and real data. The
simplified appearance of the simulation results can be attributed to two major
reasons related to the simulation pipeline and the use of the XCAT phantom.
In the simulation, tissue heterogeneity and texture, system imperfections such as
B0 and B1 inhomogenieties, tissue susceptibility, motion and other physiological
artifacts are not included. Extending the simulation framework to generate imag-
ing artifacts related to cardiac MRI such as respiratory and ECG mistriggering
artifacts can be a direction for future research.

Despite our efforts to improve the heart anatomy of the XCAT phantom by
adding trabeculae structures, the XCAT still lacks many important small details of
organs. Furthermore, the ability to generate multiple subjects is somewhat limited
to changing the scaling factor of the torso and slight rotation and translation of the
heart within the chest. Drastic changes to the position of organs would destroy the
integrity of the whole anatomy, causing organ overlap and distortion of the organ
shapes. Moreover, the motion of the XCAT heart is not based on electriophysio-
logical modeling. More advanced heart models, such as living heart project, can
provide accurate information of the heart motion link to electrical and mechanical
properties [183]. The proposed simulation framework would benefit from highly-
detailed and accurate human anatomical models to increase the realism of the
simulated images.

When simulation is preferred over synthesis; The main theme of this
thesis is to generate data for training a deep-learning segmentation algorithm,
where we demonstrate the benefit of both approaches. In another application, to
investigate the effects of respiratory motion induced slice misalignment artifacts
on image-based electrophysiological (EP) modeling of the heart with a myocardial
scar, we perform accurate image simulation at multiple acquisition resolutions on
a modified version of the XCAT with a defined scar geometry and location [50].
The XCAT anatomical model is extended with a customized cylindrically shaped
scar placed around the right coronary artery inside the myocardium of the left
ventricle. The accurate ground truth labels for different image acquisition setups
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are essential to validate the final outcome of the EP modelling. When the effects
of sequence parameters or imaging artifacts are under investigation, the physics-
based simulation is preferred over synthesis. The same holds for the application
of generating high and low-resolution pairs of images for training a deep-learning
based super-resolution network. In other words, we can benefit from the physics-
driven simulation to provide training data for the development of data-driven
synthesis approaches.

When synthesis is preferred over simulation; We explore data-driven
image synthesis when we have access to some examples for training generative
models and want to generate new samples to augment and increase the sample
diversity. For instance, we investigated the usability of synthetic data to improve
the generalization and adaptation of a segmentation network to data-sets collected
from various sites and scanners [184]. Deficits in generalization to real-world data-
sets with moderately different characteristics (distribution-shifts) represent one
of the most common hurdles appearing due to scarce data. The adoption of deep
learning methods in clinical settings is significantly hampered by these deficiencies.
However, realistically generated synthetic could address these deficits, particularly
when it comes to anonymization, protection of patient information and decreasing
the cost of data collection. When the aim is to generate images with domain-
specific features and characteristics of the training data (e.g. style of different
scanner vendors), data-driven synthesis is preferred.

A major bottleneck to generating realistic and diverse cohorts of virtual sub-
jects is the necessity to have an accurate computerized human anatomical model.
We used the 4D XCAT phantoms for this research and modified the heart model to
include details of myocardial trabeculations. Despite being one of the most flexible
and accurate anatomical models for medical imaging research, the XCAT phantom
has many limitations and shortcomings for generating diverse virtual subjects that
would resemble anatomical variabilities of a cohort of real subjects. Future research
could focus on investigating algorithms to combine electrophysiological models of
the heart with the XCAT phantom for both simulation and synthesis approaches to
generate subjects with complex dynamic heart motions for normal and regionally
hampered motions. The anatomical and organ modeling, which includes taking
into account details of the human organs and complex movements due to breathing
and beating motions is essential for generating realistic images with plausible
and accurate anatomies. Image-based modeling of the heart and adaptation of
the XCAT heart shapes to real subjects would be particularly interesting for
personalized patient-specific simulation and synthesis.

We believe this research would play a crucial role in the development of imaging
simulation and synthesis platforms for studies on cohorts of artificially generated
virtual subjects and the development, optimization, and benchmarking of a num-
ber of medical image analysis algorithms, including, but not limited to deep-neural
networks for automated image segmentation.
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