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1 Biomedical Engineering Department, Eindhoven University of Technology, Eindhoven, The 
Netherlands  

2 Philips Research Laboratories, Hamburg, Germany 
3 Philips Healthcare, MR R&D - Clinical Science, Best, The Netherlands 

Abstract. We propose a method for synthesizing cardiac MR images with plau-
sible heart shapes and realistic appearances for the purpose of generating labeled 
data for deep-learning (DL) training. It breaks down the image synthesis into la-
bel deformation and label-to-image translation tasks. The former is achieved via 
latent space interpolation in a VAE model, while the latter is accomplished via a 
conditional GAN model. We devise an approach for label manipulation in the 
latent space of the trained VAE model, namely pathology synthesis, aiming to 
synthesize a series of pseudo-pathological synthetic subjects with characteristics 
of a desired heart disease. Furthermore, we propose to model the relationship 
between 2D slices in the latent space of the VAE via estimating the correlation 
coefficient matrix between the latent vectors and utilizing it to correlate elements 
of randomly drawn samples before decoding to image space. This simple yet ef-
fective approach results in generating 3D consistent subjects from 2D slice-by-
slice generations. Such an approach could provide a solution to diversify and en-
rich the available database of cardiac MR images and to pave the way for the 
development of generalizable DL based image analysis algorithms. The code will 
be available at https://github.com/sinaamirrajab/CardiacPathologySynthesis. 

Keywords: Pathology synthesis, Cardiac MRI, GANs, VAEs, image synthesis. 

1 Introduction 

Deep generative modeling has gained attention in medical imaging research thanks to 
its ability to generate highly realistic images that may alleviate medical data scarcity 
[1]. The most successful family of generative models known as generative adversarial 
networks (GANs) [2] and Variational Autoencoders (VAEs) [3] are widely used for 
medical image synthesis and segmentation [4][5]. Many studies have proposed gener-
ative models to synthesize realistic and diversified images for brain [6][7] and heart 
[8][9] among other medical applications [10]. However, the generated data using most 
mentioned approaches are often unlabeled and therefore not suitable for training a su-
pervised deep learning algorithm, for instance, for medical image segmentation.   

https://github.com/sinaamirrajab/CardiacPathologySynthesis
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1.1 Contributions 

We propose to break down the task of cardiac image synthesis into 1) learning the de-
formation of anatomical content of the ground truth (GT) labels using VAEs and 2) 
translating GT labels to realistic CMR images using conditional GANs. We devise a 
strategy, namely Pathology Synthesis, to deform labels via interpolation in the latent 
space of the VAE for the purpose of generating virtual subjects with a target heart dis-
ease that affects the heart geometry, e.g. synthesizing a pseudo-pathological subject 
with thickened myocardium for hypertrophic cardiomyopathy. The synthetic subjects 
in this study are labeled by design and therefore suitable for medical data augmentation. 

Furthermore, we propose a method to generate 3D consistent volumes of synthetic 
subjects by modeling the correlation between 2D slices in the latent space. The rela-
tionship between the slices is captured via estimating the covariance matrix calculated 
for all latent vectors across all slices. The estimated covariance matrix is used to corre-
late the elements of a randomly drawn sample. This technique results in a coherent 
sampling from the latent space and in turn reconstruction of more consistent 3D volume 
by stacking 2D slices generated from the 2D model. 

2 Method 

Image synthesis model: The synthesis model architecture includes a ResNet en-
coder [11] for extracting the style of an input image and a label conditional decoder 
based on Spatially Adaptive Normalization (SPADE) layer  [12]. The model employs 
SPADE normalization layers throughout the generator architecture to preserve the an-
atomical content of the GT labels [12][13]. After successful training of the model with 
pairs of real images and corresponding labels, the generator can translate GT labels to 
realistic CMR images. To alter the heart anatomy of the synthesized image, we can 
simply deform the labels. In the previous studies new subjects are synthesized by ap-
plying simple transformations such as random elastic deformation, morphological dila-
tion, and erosion on GT labels [13][14]. We utilize the same synthesis network with 
default training parameters for this study and here we focus on label deformation to 
generate heart pathology using a VAE model. 

Label deformation model: We propose a DL based approach using a VAE model 
to generate plausible anatomical deformations via latent space manipulation to generate 
subjects with characteristics of heart pathologies. The VAE model consists of an en-
coder and a decoder network trained on the ground truth label masks and tries to learn 
underlying geometrical factors of the heart present in the data. The changes in the heart 
geometry can be associated with a specific type of disease. For instance, thickening and 
thinning of the left ventricular myocardium can be an indicating factor of hypertrophic 
cardiomyopathy and dilated cardiomyopathy, respectively. The goal here is to learn the 
effects of these factors on the heart geometry presented in the GT labels and to explore 
the latent space of the VAE to generate new labels with plausibly deformed anatomies. 
Additionally, we model the characteristics of a particular heart disease in the latent 
space and generate new samples with heart geometries that represent these disease char-
acteristics. 
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Fig. 1. Strategy to traverse and interpolate in the latent space to perform label deformation using 
the trained VAE. Each encoded slice of a subject is represented as a dot in the low-dimensional 
latent space for this schematic view. The statistics of pathological subjects are estimated to draw 
a sample (pseudo pathological subject) for pathology synthesis. Intermediate latent codes be-
tween normal subject (NOR) and the random pseudo-pathological subjects are linearly interpo-
lated (indicated as a dotted blue arrow) to incrementally add pathological features to the heart. 

2.1 Pathology Synthesis 

Pathology synthesis is designed to generate subjects with informed characteristics of a 
heart pathology and its effects on the geometry of the heart, given that the pathology is 
manifested in the ground truth labels. The assumption here is that subjects with a com-
mon pathological class have similar heart characteristics and hence they are encoded to 
the same area in the latent space, as shown in Fig. 1.  

Suppose we wish to generate subjects with a target pathology, for instance with char-
acteristics of hypertrophic cardiomyopathy (HCM), potentially thickening of the myo-
cardium. Note that we want to preserve the identity of a normal subject (NOR) and only 
generate disease characteristics such as thickening of the left myocardium for HCM. 
To this end, assuming that the disease features can be grouped to a neighboring location 
in the latent space, we encode all subjects with the desired pathology into the latent 
space and estimate mean, standard deviation, minimum, and maximum across all sub-
jects for all interpolated slices; (𝜇𝜇,𝜎𝜎,𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚)𝐻𝐻𝐻𝐻𝐻𝐻. These statistics are calculated on 
the mean of the posterior distribution which is the output of the encoder. The matrix 
size for these parameters is (𝑚𝑚𝑠𝑠 × 𝑚𝑚𝑧𝑧), where 𝑚𝑚𝑠𝑠 is the number of interpolated slices (32 
in our case) and 𝑚𝑚𝑧𝑧 is the size of the latent vector. Note that we equalize the number of 
slices for each subject via slice interpolation in the latent space. A sample is drawn from 
a truncated normal distribution parameterized by these statistics, which we call pseudo-
pathology sample; 𝑚𝑚𝑝𝑝𝐻𝐻𝐻𝐻𝐻𝐻~𝑇𝑇𝑇𝑇(𝜇𝜇,𝜎𝜎,𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚)𝐻𝐻𝐻𝐻𝐻𝐻. The sample generated with statis-
tics of all HCM subjects should potentially represent heart features of a HCM subject: 
abnormally thick myocardium. We expect to observe an incremental progression of this 
anatomical feature on a normal heart by performing linear interpolation between a NOR 
subject and a pseudo-HCM sample. 

Normal subject (NOR)
Disease 1 (RV)

Pseudo 
pathological 
subject

Disease 2 (HCM)

Disease 3 (DCM)

RV LV
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To model dependency of variables, the correlation between the dimensions of the 
latent code for all pathological subjects is measured using Kendall rank correlation co-
efficient. The uncorrelated generated sample is then transformed in the latent space 
according to the overall correlation coefficient (𝑚𝑚𝑧𝑧 × 𝑚𝑚𝑧𝑧) estimated from the training 
data to account for relationship between elements of the latent code. The elements of 
latent vector are correlated using Cholesky matrix decomposition as explained in sup-
plementary material. However, the relationship between different slices of one subject 
has not yet been modeled. This can lead to generating inconsistent heart geometries in 
slice direction of one subject as a consequence of slice-by-slice 2D synthesis. 

2.2 Modeling slice relationship  

We propose a simple statistical modeling to account for the relationship between slices 
in the latent space. The goal here is to generate consistent 3D volume of labels by stack-
ing 2D reconstructed slices from the decoder part of the VAE model. The 2D VAE 
model is trained as normal while we attempt to take advantage of the correlation be-
tween slices of a given subject in the latent space and reconstruct a consistent 3D vol-
ume during the inference. In pathology synthesis, we want to perform a linear interpo-
lation between a NOR subject (𝑚𝑚𝑁𝑁𝑁𝑁𝑁𝑁) and the random pseudo-pathological sample 
(𝑚𝑚𝑝𝑝𝐻𝐻𝐻𝐻𝐻𝐻) derived from the previous section in the latent space. Although different slices 
of the NOR subject are inherently correlated in the latent space, the random sample 
does not contain any information about the relationship between slices. To model this 
relationship, we estimate the correlation between slices of the 𝑚𝑚𝑁𝑁𝑁𝑁𝑁𝑁  and construct the 
associated correlation coefficient matrix (𝑚𝑚𝑠𝑠 × 𝑚𝑚𝑠𝑠). Given this matrix, we correlate the 
slices of the 𝑚𝑚𝑝𝑝𝐻𝐻𝐻𝐻𝐻𝐻 using the Cholesky matrix decomposition. The procedure is ex-
plained in more detail in the supplementary material. 

The interaction between latent vectors as well as the relationship between different 
slices is modeled to generate more realistic correlated samples in the latent space. We 
found that both latent correlation matrix (𝑚𝑚𝑧𝑧 × 𝑚𝑚𝑧𝑧) and slice correlation matrix 
(𝑚𝑚𝑠𝑠 × 𝑚𝑚𝑠𝑠) are important for consistent synthesis. This simple yet effective approach to 
sampling would better respect the relationship between features presented in the train-
ing data and result in generating 3D consistent subjects, despite utilizing 2D models. A 
similar idea for modeling the distribution of 3D brain MRI data via estimating the cor-
relation in the latent space of a 2D slice VAE has recently been explored in [15]. 

2.3 Data and implementation 

We utilize ACDC challenge data [16] including normal cases (NOR) and three disease 
classes such as dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM) 
and abnormal right ventricle (RV). All 100 ACDC subjects are resampled to 1.5 x 1.5 
mm in-plane resolution and cropped to 128 x 128 pixels around the heart using the 
provided ground truth labels. Percentile based intensity normalization is applied as a 
post-processing and the intensity range is mapped to the interval of -1 and 1. 

The input of the VAE model is a one-hot encoding version of the label map including 
three channels for heart classes of right ventricle, left ventricle, myocardium, and one 
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background class. The encoder part of the model includes four convolutional blocks 
with three convolutional layers each followed by batch normalization (BN) and 
LeakyReLU activation function. The encoded features are fed to four sequential fully 
connected layers to output the parameters of a Gaussian distribution over the latent 
representation. The decoder part of the model is comprised of four convolutional blocks 
each with one up sampling layer followed by two convolutional layers with BN and 
LeakyReLU. The last additional block of the decoder includes one convolutional layer 
followed by BN and another convolution with four channel outputs and Softmax acti-
vation function. The VAE model is trained using a combination of cross-entropy loss 
as the reconstruction loss and Kullback-Leibler divergence (KLD) with weighting fac-
tor of β for regularization of the latent space capacity [17]. We experimentally identify 
the size of the latent vector (𝑚𝑚𝑧𝑧 = 16) and weight of KLD (β=15) by inspecting the 
quality of the label reconstruction and the outcome of interpolation. 

 
Fig. 2. Pathology synthesis to generate the transition between a normal subject (NOR) to a target 
pathology such as dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM) and di-
lated right ventricle (RV). The effects of a disease on the heart geometry of a subject are respec-
tively left ventricle dilation, myocardial thickening and right ventricle dilation. 

NOR DCM

NOR HCM

NOR RV

Pathology synthesis
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3 Results 

3.1 Pathology synthesis 

The results for pathology synthesis with three target heart diseases namely DCM, HCM, 
and RV diseases are shown in Fig. 2. The characteristics of a particular heart disease 
are linearly added to the latent code of a normal subject (NOR). The heart shape char-
acteristics of subjects with DCM, dilation of the left ventricle, is progressively appear-
ing on the NOR subject through interpolation from left to right. The same is observed 
for thickening of the myocardium in the case of NOR to HCM and dilation of the right 
ventricle for NOR to RV. Note that in pathology synthesis the identity of the NOR 
subject is not changing while the disease features are manifested on the geometry of the 
subject’s heart and the image appearance stays the same. Interestingly, the detailed 
structures of the papillary muscles and myocardial trabeculations inside the left and 
right ventricles are generated despite not being present in the ground truth labels.  
We generate synthetic data including five pathological versions of each NOR case, e.g. 
by interpolating between NOR and HCM subject (synth_HCM). To visualize the ana-
tomical variation of the synthesized data in comparison with the real data, we calculated 
the ejection fraction (EF) for RV and LV using the ground truth labels ( EF(%) =
𝐸𝐸𝐷𝐷𝐷𝐷−𝐸𝐸𝐸𝐸𝐷𝐷

𝐸𝐸𝐷𝐷𝐷𝐷
∗ 100 ), where EDV and ESV are end-diastolic and end-systolic volumes. As 

can be seen from Fig. 3, there is a considerable overlap between the EF distribution of 
the synthesized data and the real data. 

Fig. 3. Distribution of calculated ejection fraction (EF) using the ground truth labels for right-
ventricle (EF_RV) and left-ventricle (EF_LV) for the real and synthesized data with pathology. 

3.2 Modeling the slice relationship 

Our proposed 2D model synthesizes images slice-by-slice with high visual fidelity 
and realism. However, the synthetic subject that is composed of stacking multiple 2D 
slices is not generated coherently by the network when we look at the generated slices 
from perpendicular directions. The reason is that random samples in the latent space 
contain no information about the relationship between different slices of one subject, 
i.e. generated slices are uncorrelated. Synthesis examples with target pathologies and 
the positive effects of the proposed slice correlation on generating 3D consistent subject 

Synthesized dataReal data
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is shown in Fig. 4 with three-dimensional rendering of the synthesized labels. The ir-
regularities in the slice direction are substantially reduced for the correlated slices for 
synthesizing different pathological cases. We notice that some real images may origi-
nally be hampered by slice misalignment artifact and our correlated sampling cannot 
reduce this artifact. 

 
Fig. 4. Three-dimensional rendering of the labels for uncorrelated and correlated synthesis for 
different cases of pathology synthesis. The first three columns show the uncorrelated slices and 
its impact on the consistency of the anatomy in the perpendicular views of the short axis slices 
while the second three columns show the positive effects of correlating samples on reducing the 
inconsistency and irregularity of the consecutive slices. The last column shows one real example. 

4 Discussion and Conclusion 

This study investigated an approach for realistic cardiac magnetic resonance image syn-
thesis with target heart pathologies by separating the task into label deformation using 
a VAE and image generation using a label-conditional GAN. The pathology synthesis 
was designed to generate subjects with heart characteristics of a particular disease 
through sampling in the latent space with statistics of a target pathology via performing 
linear interpolation between a normal subject and pseudo pathological sample in the 
latent space of the trained VAE. 

Furthermore, to tackle one of the important challenges of 3D medical image synthe-
sis, we demonstrated that modeling the correlation between slices in the latent space 
can be a simple yet effective way to generate consistent 3D subjects from 2D models.  

A limitation of our study is the lack of quantitative evaluation of the quality of syn-
thesized images as well as of the 3D consistency of the synthesized subjects. This aspect 
will be explored in the future work. Visualizations of the synthesized images and the 
distribution of the heart ejection fractions on the synthesized data nonetheless show 

Uncorrelated synthe�c samples Correlated synthe�c samples Real
DCM HCM RV DCM HCM RV NOR
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encouraging results. Our approach could provide a solution to diversify and enrich an 
available database of cardiac MR images and to pave the way for the development of 
generalizable DL based image analysis algorithms. The methods proposed in this study 
could be extended for other applications in medical image synthesis such as brain MR 
image generation and simulation of lesion progression. 
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Supplementary Material 

Cholesky decomposition and correlated samples 

In order to simulate correlated variables with a given covariance matrix (𝐶𝐶), Cholesky 
matrix decomposition is used in this study. The Cholesky matrix decomposition is a 
factorization of a positive-definite symmetric matrix into a product of a lower and upper 
triangular matrix, 𝐿𝐿 𝑚𝑚𝑚𝑚𝑎𝑎 𝐿𝐿𝑇𝑇, respectively. 

𝐶𝐶 = 𝐿𝐿 𝐿𝐿𝑇𝑇   
Assuming an uncorrelated random sample 𝑋𝑋 with unit covariance matrix of 

𝔼𝔼(𝑋𝑋𝑋𝑋𝑇𝑇) = 𝐼𝐼, a new random vector can be computed as 𝑌𝑌 = 𝐿𝐿𝑋𝑋 that its covariance ma-
trix is derived: 

𝔼𝔼(𝑌𝑌𝑌𝑌𝑇𝑇) =  𝔼𝔼(𝐿𝐿𝑋𝑋(𝐿𝐿𝑋𝑋)𝑇𝑇) =  𝔼𝔼(𝐿𝐿𝑋𝑋𝑋𝑋𝑇𝑇𝐿𝐿𝑇𝑇) = 𝐿𝐿𝔼𝔼(𝑋𝑋𝑋𝑋𝑇𝑇)𝐿𝐿𝑇𝑇 = 𝐿𝐿𝐼𝐼𝐿𝐿𝑇𝑇 = 𝐿𝐿𝐿𝐿𝑇𝑇 = 𝐶𝐶 
Note that the expectation is a linear operator; 𝔼𝔼(𝑐𝑐𝑋𝑋) = 𝑐𝑐𝔼𝔼(𝑋𝑋). 

Correlating and generating sample with pathology characteristics 

For generating a subject with pathological characteristics, a random sample is drown 
using a truncated normal distribution parameterized by the statistics of the desired pa-
thology, e.g. mean, standard deviation, minimum, and maximum estimated on all sub-
jects with hypertrophic dilated cardiomyopathy (HCM); namely pseudo-pathological 
sample  𝑚𝑚𝑝𝑝𝐻𝐻𝐻𝐻𝐻𝐻. These statistics are calculated on the mean of the posterior distribution 
of features estimated by the encoder part of the VAE.  The following steps are followed 
to correlate the elements of this pseudo-pathological sample cross slice direction and 
latent dimension: 

─ Estimate correlation coefficient between latent dimensions across all subjects with 
desired pathology using Kendall rank correlation coefficient method; 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑧𝑧𝐻𝐻𝐻𝐻𝐻𝐻  with 
size (𝑚𝑚𝑧𝑧 × 𝑚𝑚𝑧𝑧) where 𝑚𝑚𝑧𝑧 is the size of the latent vector (𝑚𝑚𝑧𝑧 = 16) 

─ Calculate the lower triangular matrix 𝐿𝐿 using Cholesky decomposition; 𝐿𝐿𝑧𝑧𝐻𝐻𝐻𝐻𝐻𝐻 
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─ Correlate the latent dimensions of the pseudo pathological sample across the element 
of latent vector given above formula; 𝑦𝑦𝑝𝑝𝑧𝑧𝐻𝐻𝐻𝐻𝐻𝐻 = 𝐿𝐿𝑧𝑧𝐻𝐻𝐻𝐻𝐻𝐻𝑚𝑚𝑝𝑝𝐻𝐻𝐻𝐻𝐻𝐻 

─ Estimate the correlation coefficient between slices of the target normal subject 
(NOR) we wish to use for interpolation; 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑁𝑁𝑁𝑁𝑁𝑁  with size (𝑚𝑚𝑠𝑠 × 𝑚𝑚𝑠𝑠) where 𝑚𝑚𝑠𝑠 is 
the number of slices (𝑚𝑚𝑠𝑠 = 32) 

─ Calculate the lower triangular matrix 𝐿𝐿 using Cholesky decomposition; 𝐿𝐿𝑠𝑠𝑁𝑁𝑁𝑁𝑁𝑁  
─ Correlate the latent dimensions of the pseudo random sample cross slices given 

above formula; 𝑧𝑧𝑝𝑝𝑧𝑧𝑠𝑠𝐻𝐻𝐻𝐻𝐻𝐻 = 𝐿𝐿𝑠𝑠𝑁𝑁𝑁𝑁𝑁𝑁𝑦𝑦𝑝𝑝𝑧𝑧𝐻𝐻𝐻𝐻𝐻𝐻 
─ Linearly interpolate between 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁  and 𝑧𝑧𝑝𝑝𝑧𝑧𝑠𝑠𝐻𝐻𝐻𝐻𝐻𝐻 in the latent space 
─ Reconstruct slices-by-slice the interpolated samples using the decoder part of the 2D 

VAE 
─ Compose 3D volume from synthesized 2D slices 

The correlation coefficient matrix for all above mentioned steps is shown in Fig. 5. 
Correlating latent dimensions found to be as important as correlating slices of subject 
for generating coherent slices with smoothly changing features.  

 
Fig. 5. Correlation coefficient matrix for a) uncorrelated pseudo-HCM sample across latent di-
mensions and b) across slices, c) all HCM subjects across latent dimensions, d) one normal sub-
ject across slices, and e) the correlated pseudo pathological sample calculated using the Cholesky 
decomposition. 
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