178 research outputs found

    Robogami: A Fully Integrated Low-Profile Robotic Origami

    Get PDF
    Intelligent robotic systems that can react to unprogrammed tasks and unforeseen environmental changes require augmented "softness." Robogami, a low-profile origami robot, addresses intrinsic (material-wise) and extrinsic (mechanism-wise) softness with its multi-degree-of-freedom (DOF) body driven by soft actuators. The unique hardware of the Robogami and its submillimeter thick construction enable diverse transformations as those achievable by the paper origami. The presented Robogami shows the first fully integrated version that has all the essential components including its controller within a thin sheet. Construction of this robot is possible via precise, repeatable, and low cost planar fabrication methods often reserved for microscale fabrications. In this research, we aim at expanding the capabilities of Robogamis by embedding bidirectional actuation, sensing, and control circuit. To assess the performance of the proposed sensors and actuators, we report on the performance of these components in a single module and in the four-legged crawler robot

    Soft actuation and sensing towards robot-assisted facial rehabilitation

    Get PDF
    Continuing research efforts in robot-assisted rehabilitation demand more adaptable and inherently soft wearable devices. A wearable rehabilitative device is required to follow the motion of the body and to provide assistive or corrective motions to restore natural movements. Providing the required level of fluidity in wearable devices becomes a challenge for rehabilitation of more sensitive and fragile body parts, such as the face. To address this challenge, we propose a soft actuation method based on a tendon-driven robotic origami (robogami) and a soft sensing method based on a strain gauge with customized stretchable mesh design. The proposed actuation and sensing methods are compatible with the requirements in a facial rehabilitative device. The conformity of robogamis originates from their multiple and redundant degrees of freedom and the controllability of the joint stiffness, which is provided by adjusting the elasticity modulus of an embedded shape memory polymer (SMP) layer. The reconfiguration of the robogami and the trajectory and directional compliance of its end-effector are controlled by modulating the temperatures, hence the stiffness, of the SMP layers. Here we demonstrate this correlation using simulation and experimental results. In this paper, we introduce a thin and highly compliant sensing method for measuring facial movements with a minimal effect on the natural motions. The measurements of the sensors on the healthy side can be used to calculate the required tendon displacement for replicating the natural motion on the paralyzed side of the face in patients suffering from facial palsy

    Generalized Diffusion MRI Denoising and Super-Resolution using Swin Transformers

    Full text link
    Diffusion MRI is a non-invasive, in-vivo medical imaging method able to map tissue microstructure and structural connectivity of the human brain, as well as detect changes, such as brain development and injury, not visible by other clinical neuroimaging techniques. However, acquiring high signal-to-noise ratio (SNR) datasets with high angular and spatial sampling requires prohibitively long scan times, limiting usage in many important clinical settings, especially children, the elderly, and emergency patients with acute neurological disorders who might not be able to cooperate with the MRI scan without conscious sedation or general anesthesia. Here, we propose to use a Swin UNEt TRansformers (Swin UNETR) model, trained on augmented Human Connectome Project (HCP) data and conditioned on registered T1 scans, to perform generalized denoising and super-resolution of diffusion MRI invariant to acquisition parameters, patient populations, scanners, and sites. We qualitatively demonstrate super-resolution with artificially downsampled HCP data in normal adult volunteers. Our experiments on two other unrelated datasets, one of children with neurodevelopmental disorders and one of traumatic brain injury patients, show that our method demonstrates superior denoising despite wide data distribution shifts. Further improvement can be achieved via finetuning with just one additional subject. We apply our model to diffusion tensor (2nd order spherical harmonic) and higher-order spherical harmonic coefficient estimation and show results superior to current state-of-the-art methods. Our method can be used out-of-the-box or minimally finetuned to denoise and super-resolve a wide variety of diffusion MRI datasets. The code and model are publicly available at https://github.com/ucsfncl/dmri-swin

    Stiffness Control With Shape Memory Polymer in Underactuated Robotic Origamis

    Get PDF
    Underactuated systems offer compact design with easy actuation and control but at the cost of limited stable con- figurations and reduced dexterity compared to the directly driven and fully actuated systems. Here, we propose a compact origamibased design in which we can modulate the material stiffness of the joints and thereby control the stable configurations and the overall stiffness in an underactuated robot. The robotic origami, robogami, design uses multiple functional layers in nominally twodimensional robots to achieve the desired functionality. To control the stiffness of the structure, we adjust the elastic modulus of a shape memory polymer using an embedded customized stretchable heater. We study the actuation of a robogami finger with three joints and determine its stable configurations and contact forces at different stiffness settings. We monitor the configuration of the finger using feedback from customized curvature sensors embedded in each joint. A scaled down version of the design is used in a two-fingered gripper and different grasp modes are achieved by activating different sets of joints

    A Low Profile Electromagnetic Actuator Design and Model for an Origami Parallel Platform

    Get PDF
    Thin foldable origami mechanisms allow reconfiguration of complex structures with large volumetric change, versatility, and at low cost; however, there is rarely a systematic way to make them autonomously actuated due to the lack of low profile actuators. Actuation should satisfy the design requirements of wide actuation range, high actuation speed, and backdrivability. This paper presents a novel approach toward fast and controllable folding mechanisms by embedding an electromagnetic actuation system into a nominally flat platform. The design, fabrication, and modeling of the electromagnetic actuation system are reported, and a 1.7 mm-thick single-degree-of-freedom (DoF) foldable parallel structure reaching an elevation of 13mm is used as a proof of concept for the proposed methodology. We also report on the extensive test results that validate the mechanical model in terms of the loaded and unloaded speed, the blocked force, and the range of actuation

    Trojan Horses: Creating a positive hidden (extra)curriculum through a Justice, Equality, Diversity, and Inclusion (JEDI) initiative

    Get PDF
    In this paper, we describe a mechanism for subverting the institutional-level neo-liberal hidden curricula of responsibility learning in universities by using a positive hidden curriculum based in extra-curricular activities partnering staff and students. In our study, we leverage projects from an institution sponsored Justice, Equality, Diversity and Inclusion (JEDI) initiative as notional ‘trojan horses’ to instil within university students a more reflexive awareness of responsibility that they can take with them when they graduate. In delivering this positive hidden (extra)curriculum, staff are seemingly performing the formal agenda of the institution’s responsibility agenda whilst undermining its managerialist hidden curriculum by working in tandem with students. Our key findings—student reflection and voice—are evidence of the positive hidden curriculum implementation. Our contributions are two-fold. First, we demonstrate that positive hidden curricula can serve as a tool of micro-activism to subvert managerialist hidden curricula. Second, we offer another dimension to Semper and Blasco’s (2018) interpersonal strategies for challenging the hidden curriculum by showing that collaborative projects between students and staff can be sites of a positive hidden (extra)curriculum. Collaborative initiatives such as the ones we describe in this article provide a tangible foundation for reconsidering creative and intrinsic approaches to responsible learning environments

    Allogeneic Stem Cells Alter Gene Expression and Improve Healing of Distal Limb Wounds in Horses.

    Get PDF
    Distal extremity wounds are a significant clinical problem in horses and humans and may benefit from mesenchymal stem cell (MSC) therapy. This study evaluated the effects of direct wound treatment with allogeneic stem cells, in terms of gross, histologic, and transcriptional features of healing. Three full-thickness cutaneous wounds were created on each distal forelimb in six healthy horses, for a total of six wounds per horse. Umbilical cord-blood derived equine MSCs were applied to each wound 1 day after wound creation, in one of four forms: (a) normoxic- or (b) hypoxic-preconditioned cells injected into wound margins, or (c) normoxic- or (d) hypoxic-preconditioned cells embedded in an autologous fibrin gel and applied topically to the wound bed. Controls were one blank (saline) injected wound and one blank fibrin gel-treated wound per horse. Data were collected weekly for 6 weeks and included wound surface area, thermography, gene expression, and histologic scoring. Results indicated that MSC treatment by either delivery method was safe and improved histologic outcomes and wound area. Hypoxic-preconditioning did not offer an advantage. MSC treatment by injection resulted in statistically significant increases in transforming growth factor beta and cyclooxygenase-2 expression at week 1. Histologically, significantly more MSC-treated wounds were categorized as pro-healing than pro-inflammatory. Wound area was significantly affected by treatment: MSC-injected wounds were consistently smaller than gel-treated or control wounds. In conclusion, MSC therapy shows promise for distal extremity wounds in horses, particularly when applied by direct injection into the wound margin. Stem Cells Translational Medicine 2018;7:98-108

    Favorable outcomes with reduced steroid use in juvenile dermatomyositis

    Get PDF
    BACKGROUND: High-intensity glucocorticoid regimens are commonly used to induce and maintain remission in Juvenile Dermatomyositis but are associated with several adverse side-effects. Evidence-based treatment guidelines from North American and European pediatric rheumatology research societies both advocate induction with intravenous pulse steroids followed by high dose oral steroids (2 mg/kg/day), which are then tapered. This study reports the time to disease control with reduced glucocorticoid dosing. METHODS: We retrospectively reviewed the records at a single tertiary-care children\u27s hospital of patients diagnosed with Juvenile Dermatomyositis between 2000 and 2014 who had a minimum of 2 years of follow-up. The primary outcome measure was time to control of muscle and skin disease. Additional outcome measures included glucocorticoid dosing, effect of treatment on height, frequency of calcinosis, and complications from treatment. RESULTS: Of the 69 patients followed during the study period, 31 fulfilled inclusion criteria. Median length of follow-up was 4.58 years, (IQR 3-7.5). Myositis control was achieved in a median of 7.1 months (IQR 0.9-63.4). Cutaneous disease control was achieved in a median of 16.7 months (IQR 4.3-89.5). The median starting dose of glucocorticoids was 0.85 mg/kg/day, (IQR 0.5-1.74). The median duration of steroid treatment was 9.1 months, (IQR 4.7-17.4), while the median duration of any pharmacotherapy was 29.2 months (IQR 10.4 to 121.3). Sustained disease control off medications was achieved in 21/31 (68%) patients by the end of review. Persistent calcinosis was identified in only one patient (3%). CONCLUSION: Current accepted treatment paradigms for Juvenile Dermatomyositis include oral glucocorticoids beginning at 2 mg/kg/day and reduced over a prolonged time period. However, our results suggest that treatment using reduced doses and duration with early use of steroid-sparing agents is comparably effective in achieving favorable outcomes in Juvenile Dermatomyositis

    An Under Actuated Robotic Arm with Adjustable Stiffness Shape Memory Polymer Joints

    Get PDF
    Abstract—Various robotic applications including surgical instruments, wearable robots and autonomous mobile robots are often constrained with strict design requirements on high degrees of freedom (DoF) and minimal volume and weight. An intuitive design to meet these contradictory requirements is to embed locking mechanism in under actuated robotic manipulators to direct the actuation from a single and remote source to drive different joints on demand. Mechanical clutches do serve such purposes but often are bulky and require auxiliary mechanism making it difficult to justify the high cost adding the additional DoF, especially in cm scale. Here, we introduce an under-actuated robotic arm with shape memory polymer (SMP) joints. Through controlling the temperature, the stiffness of the joints can be adjusted and selected joints will be activated while the rest are fixed in their position. The presented prototype can control the joints independently with a coupled actuation from two stepper motors. Since we have redundant DoFs in the arm, there can be more than one configuration to reach a given position. We use a probabilistic technique to determine the optimum configuration with the minimum number of active joints that can yield the desired posture. In this paper, we report on the performance of the proposed design for the hardware and the configuration planner. I
    • …
    corecore