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To have an intelligent robotic system that can react
to un-programmed tasks and unforeseen environmental
changes, robots require augmented ”softness”. Robogami,
a low-profile origami robot, addresses softness intrinsically
(material-wise) and extrinsically (mechanism-wise) with its
multi-Degree-of-Freedom rigid tile arrays with soft folding
areas driven by embedded actuators. The unique hardware
of the Robogami and its sub-millimeter thick construction en-
ables diverse transformations as those achievable by the pa-
per origami. The presented Robogami shows the first fully
integrated version that has all the essential components in-
cluding a micro-controller within a thin sheet. Construction
of this robot is possible by using precise planar fabrication
methods often used for micro system fabrications that has
made prototyping of custom made robots rather low-cost and
fast. In this research, we aimed at expanding the capabil-
ities of Robogamis by embedding bi-directional actuation,
sensing, and control circuit. To assess the performance of
the proposed sensors and actuators, we report on the per-
formance of these components in a single module and in the
Crawler robot consisting of four modules as legs.

1 Introduction
Demanding new applications for robots often include in-

teraction with unknown and ever altering environment that

require softer and more compact systems [1] in order to

meet the safety and reliability criteria in different applica-

tions such as search and rescue [2, 3] or rehabilitation [4].

There are two main research streams toward achieving this

softness: one is to fabricate the whole structure including

the body and the actuators with materials that are inher-

ently soft [2, 5] and the other is to make systems with many

Degrees-of-Freedoms (DoFs) that consist of stiff parts with

soft joints [6]. Having finite DoF, analysis and control of the

latter is more feasible. Moreover, new methods for micro-

fabrication makes miniaturization and hence the number of

DoFs for such systems seemingly limitless. In these systems

the resolution and the folding pattern for multiple folds of

the robot are decided by the application.

Robotic Origamis (Robogamis) are low-profile, sheet-

like robots that achieve softness and reconfigurability

through multiple DoFs. In Robogami, the stiff tiles are con-

nected in folding areas by low profile actuators that are in-

herently soft. Folding 2D patterns into 3D structures is an

accurate and fast way of robot fabrication [7–10]. Our ver-

sion of the Robogami, however, is a system that not only

can make 2D to 3D transformation [11,12], but also includes

actuators, sensors and circuitry [13]. Such a system can au-

tonomously transform itself into its final shape and start per-

forming the desired task. The origami structures that make

up the underlying mechanisms in these robots can theoreti-

cally transform the shape of the body into any 3D shell using

predetermined crease patterns [14]. In reality, this universal-

ity theory is limited by finite thickness and capabilities of the

embedded actuators and sensors.

Softness in Robogami comes from its large number of

DoFs: to achieve a high resolution, and hence DoF, the actu-

ators should be small and have a low-profile for maintaining

sub-millimeter thickness, they should also have sufficient en-

ergy density and range of motion to achieve the desired trans-

formations. The Shape Memory Alloy (SMA) torsional ac-

tuator is a proper choice that satisfies this long list of require-

ments [15]. The large range of motion and blocked torque of

these actuators, have already made them a popular choice for

meso-scale robots [16–20]. In our design, two antagonistic

SMA sheet actuators are used to make bidirectional folds in

the Robogami.

Most studies on Robogami are only concerned with the

folded and unfolded states that are achievable without feed-

back from the bending angle [12,21]. However, a Robogami,

as any functional multi-DoF robotic system, requires feed-
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Fig. 1: The Crawler robot: (a) model, (b) exploded view of the functional layers (actuators are in layer (i). Layers (ii) and (v) are glass fiber layers that

make the body. Layer (iii) contains the heaters and layer (iv) contains the sensors. Layer (vi) is the controller circuit.), and (c) fabricated robot

back from the bending angle on each fold. Previously,

silicone-rubber micro-channels filled with conductive liquid

[22,23] and conductive silicone [13] were considered as cur-

vature sensors for Robogami. The main problem with the

micro-channel sensors is their lack of robustness and dif-

ficulty of fabrication. For the conductive silicone sensors,

the complex dynamic response [24] and the hysteresis in the

sensor response which is dependent on the deformation rate

is the main problem preventing an accurate feedback con-

trol [13]. So we have turned to another type of sensors based

on piezo-resistive materials [25]. These sensors are easily

customizable and their performance is not affected much by

their size or shape. For curvature sensors in Robogami, we

have chosen sensors made from printed carbon ink on poly-

imide layer [26]. These are more robust and have fewer prob-

lems with the dynamics of the filler material.

The main contribution of this paper is expanding the ca-

pabilities of the Robogamis by embedding bidirectional ac-

tuation, customizable curvature sensors, and control circuit.

Here, we present the design and details of each of these ele-

ments and then study their overall performance in a Crawler

robot made of 4 bending modules as legs. Figure 1 presents

the design of this robot. The components embedded in it are

presented in the exploded model in figure 1b.

In the next section, fabrication process of the Robogami

is presented. Next, we will present the actuator and the sen-

sor design parameters, their characterization, and their per-

formance in a single module. In section IV, we present the re-

sult of successful interaction between different components

in a Crawler robogami robot to achieve locomotion. Finally,

section VI presents the conclusion of this work and the future

steps.

2 Fabrication of Robogami
Robogamis are semi 2D robots that, depending on the

application, might have different components. The main fea-

ture of these robots is their layer by layer fabrication method

which enables us to process different functional layers sepa-

rately and then stack them together. Many Origami based

robots have been developed with different components to

fulfill different tasks (basic as 2D to 3D transformation for

robot body fabrication [7–10] or complicated as locomotion

[27]). In the present design we aimed at making a Robogami

structure independent as possible by embedding actuators,

heaters, curvature sensors, and control circuit into glass fiber

body layers (figure 1). These component are all processed in-

dividually and stacked together. Then in the integration step,

the resin from Pre-impregnated glass fiber bonds all the lay-

ers together under pressure and heat. The cure temperature

of the resin is 110°C which is acceptable for all components

except for the actuators which have lower transition temper-

ature. So the actuators are mounted on the cured structure

using bolt and nuts in the last step.

As mentioned, in this design of Robogami, controller

circuit is embedded in the robot. A micro controller (At-

tiny 1634) decides on the control sequence steps based on

the feedback from the curvature sensors (the stepping se-

quence of the robot will be studied later). The command

from the micro controller is amplified through a transistor

and the output from the transistor is connected to the heaters

that activate SMA actuators. Embedding the controller cir-

cuit makes the electrical connections of the robot much sim-

pler and more robust and is a step toward making a com-

pletely autonomous Robogami structures.

For the body layers, the only process before integration

is cutting the desired pattern which is done using a laser



micro-machining tool [13]. As mentioned, sheet SMA actu-

ators were chosen as actuators in this design of Robogami.

These actuators needs to be annealed. So, after cutting,

they are formed and get annealed in the desired shape (the

annealed shape of the actuators will be discussed shortly).

SMA actuators are heat activated and since self activation

by passing current is not possible for the sheet actuators,

we need an external heater layer. Here we used Polyimide

backed Inconel (Ni-Cr alloy) sheet for producing the heaters.

The fabrication of the heaters starts with covering the Inconel

with etchant resist and then burning a serpentine pattern on

the resist. This serpentine path makes large enough resis-

tance to act as heater in the tile where it is in contact with the

actuator. Then a mesh structure (similar to the mesh intro-

duced for stretchable circuit in [22]) is cut through all layers

in the folding area which makes a stretchable connection be-

tween the heaters on the two tile areas. Next, the outline of

the heaters is cut and it is placed in the etchant tank for re-

moving the Inconel along the serpentine cuts. Finally, the

etchant resist is cleaned in acetone bath. To facilitate the

connection of the sensors and the circuit, we also accounted

for connection pads for the sensors on the heater layer which

connects the sensors to the circuit.

With the limitations on the size, the minimum radius of

curvature and shape, the use of commercially available sen-

sors were ruled out and it was imperative to develop cur-

vature sensors to meet all the needs of Robogami. Among

sensor options for Robogami (e.g. liquid-metal filled micro-

channels and carbon based piezo resistive materials), we

have chosen the carbon ink curvature sensors. These sensors
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Fig. 2: (a) The curvature sensors and a close up of the sensing part to show

parallel score marks. These marks increase the sensitivity in the direction

parallel to them which is desired since we can increase the sensitivity to

bending without affecting the sensitivity to twist. (b) The schematic of the

layers of the sensor. (c) The exploded view presenting the base Polyimide

layer (i), carbon ink layer (ii), hotmelt adhesive layer(iii), and the cover

Polyimide layer.

exhibit a high electrical resistance change under strain that

is caused by micro cracks opening and closing in the carbon

layer [26]. In order to increase the resistance change and to

some extent regulate this effect, we have scored the poly-

imide substrate with the laser micro machining system intro-

duced in [13]. Figure 2a shows these sensors and the score

marks on the base Polyimide layer. Figure 2b, 2c presents

the schematic of the sensor and an exploded view to show

different layers in it. In these sensors, the score lines on the

polyimide layer induces stress concentration which is used

to amplify the resistance change in a desired direction. This

is useful for reducing the reading error caused by the twist

which will be discussed shortly. The cover Polyimide layer

in 2c was added to protect the conductive path.

The fabrication process for these sensors starts with cov-

ering the surface of the base Polyimide layer (layer (i) in fig-

ure 2c) with masking tape and cutting the outline of the de-

position area and removing the tape in those areas. Next, the

surface of the base Polyimide layer is scored with the laser

beam down to one third of its thickness and a layer of carbon

ink is deposited and the mask is removed (this leaves us with

the carbon ink layer (ii) presented in figure 2c). Then, the

carbon layer is covered with a protective layer (Polyimide

cover layer (iv) in figure 2c) which prevents scratches on the

conductive layer. This layer is attached using a hotmelt adhe-

sive sheet, which is cut to the right form with the laser (layer

(iii) in figure 2c), to the base Polyimide layer in the heat

press. Finally, the sensor outline is cut and it is attached to

the electrodes designed on the heater layer (the heater layer

also plays a role of intermediate conductive circuit between

controller and the sensor). The overlay of the sensor and

heater layer (the connection part) can be seen in figure 1b.

As mentioned above after preparing all the layers, they

are integrated into a robotic sheet, that embeds all the func-

tional layer, in a heat press. In the next 2 sections details of

the characterization of the actuator and sensor layers will be

presented.

3 SMA torsional actuator for Robogami
High torque to mass ratio of thin sheet SMA actuators

makes them an attractive candidate for low profile and com-

pact robots [15, 17]. These actuators are also compatible

with 2D layer-by-layer fabrication of Robogami and provide

potential for easy integration in systems with multi-DoFs.

For bidirectional actuation, we use two antagonistic actua-

tors on each fold as presented in figure 3.

Assuming a simple bending beam model, a uniform ra-

dius of curvature along the actuators, and neglecting the twist

in the tiles, Eqn. (1) yields the torque in each SMA actuator.

ε = (
y
R
=

yθ
La

)

σ = F(ε,Temp)

⎫⎪⎬
⎪⎭T =

∫ −t/2

−t/2
y(wσdy) (1)

In Eqn. (1), t and w are thickness and width of the actu-

ator. ε and σ are stain and stress, y is the distance from the
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Fig. 3: (a) A module with antagonistic bending actuators. one of the actu-

ators have its annealed shape in folded state while the other have unfolded

annealed shape. By activating each of the two we can transform between

the folded and unfolded states. (b) Unfolded module and the schematic of

its side view. (c) folded state and its side view schematic. In the side views

the tiles are shown in black and the gray parts represent the actuators.

neutral plane, R is the radius of curvature, La is the length

of the actuator and θ is the bending angle (figure 3 presents

the geometric parameters governing the torque and bending

angle relation). To evaluate this equation, stress-strain data

F(ε, temp) is required. Here, we used data from [28]. Since

F(ε, temp) is dependent on many factors such as annealing

process, number of actuation cycles and grain structure of

the metal, which are different from case to case. So, this

study, using the data from [28], will not give us accurate

numbers for torque, but it can provide us with an understand-

ing of the important design parameters and the overall behav-

ior of SMA actuators in antagonistic arrangement. Figure 4
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Fig. 4: Torque in the folding and unfolding actuators. Blocked torque of

the unfolding actuator is presented by black lines which is zero at -90°that

corresponds to the memory shape of the actuator (the schematics in the fig-

ures presents the corresponding shape of actuators in each bending angle).

Based on the temperature of the actuators (the phase of the material), each

bending angle corresponds to two values: one for active (heated) and one for

passive (cold) actuator. For folding actuator (red lines), the memory shape

(zero torque point) is at 270°and its trend is similar as before. There are two

equilibrium points that correspond to the intersection of the blocked torque

of an activated (heated) actuator with the other actuator in inactive (cold)

state. After reaching the equilibrium point and cutting off the current, the

equilibrium point stars to shift along the green lines (elastic relaxation of the

passively deformed actuator) till reaching the new equilibrium where both

actuators are cold.
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Fig. 5: Schematic of the test setup for measuring blocked torque of SMA

actuators in their whole range of motion

presents the torque generated by the activated SMA actuator

and the torque that is needed to deform the passive actuator

as a function of the bending angle based on Eqn. (1).

In figure 4, there are three lines for the blocked torque

of each actuator. They correspond to the torque that the ac-

tivated actuator (in Austenite phase) generates, the torque

that is needed to deform the inactive actuator (in Marten-

site phase) and the elastic relaxation in the passive actuator

around the equilibrium point when it is unloaded. The inter-

sections of the lines corresponding to the Austenite phase of

one actuator and the Martensite phase of the other determines

the equilibrium angle of the fold with bidirectional actuation.

When the current to the active actuator is cut off, it starts to

cool down and the torque in it drops to the Martensite phase

line. The torque in the passive actuator also drops along

the unloading line till a new equilibrium point is achieved.

The range of motion for a fold with bidirectional actuation

is determined by the length of the actuator. According to the

model, choosing the length to be 4.5 mm (for 0.1 mm thick

actuators), the range of motion will slightly be higher than

180°(figure 4). Here we have chosen the annealed position

of the actuators in a way to get one equilibrium point on un-

folded state (0°) and another one on the folded state (180°).

We also assumed 8% as maximum allowable strain for the

actuator in the equilibrium points.

The design of the actuators (their dimensions and an-

nealed shapes) are based on the result of the theoretical study

presented above. In the remaining of this section, we study

the performance of the actuators through experiments and

more accurately investigate the accessible range of motion in

a fold with bidirectional actuation and also the response time

and the blocked torque of the actuators.

When activated without any opposing force, SMA ac-

tuators have high fidelity to their memory shape in repeated

cycles. But under load they suffer from memory loss. Many

factors such as the maximum strain, the opposing force and

the temperature gradient play a part in this memory loss.

Also, the range of motion of the actuators in antagonistic ar-

rangement is smaller than the bending angle of the annealed

shape of each actuator. This is caused by the opposing force

needed for deforming the other actuator. Because of this and

also the memory loss, SMA actuators should be annealed in

deformations larger than the goal angles. We have chosen the

annealing shape of the folding actuators as a cylinder with di-

ameter close to 1.5 mm (the folding actuator annealed shape

is presented in figure 6a. For the unfolding actuator, the an-
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Fig. 6: Result of the blocked torque tests which corresponds to the theoretical result presented in figure 4. (a) Torque generated by the actuators in motion

toward 180°(the folded state) with the folding actuator activated and passively deformed unfolding actuator. (b) Torque generated by the actuators in motion

toward 0°(the unfolded state) with the unfolding actuator activated and passive folding actuator. The elastic relaxation in both plots corresponds to unloading

of the passive actuator which happens when the current to the active actuator is cut off and it starts to cool down and its blocked torque decreases.

nealed shape was a half cylinder with the radius of curva-

ture close to 3 mm (the actuator annealed shape is presented

in figure 6b). These annealed shapes produce large enough

bending angles to enable the crawler to walk.

In the Crawler, the resisting torque against deforma-

tion comes from the antagonistic actuator and also from the

weight of the structure. So other than the accessible range of

motion, we need to obtain a measure of the blocked torque

of the actuators. Figure 5 presents the setup used for blocked

force tests. The rotating base in this setup lets us measure the

blocked forces in different bending angles.

Because of the aforementioned memory loss, actuator’s

blocked torque depends on its activation history. When the

actuator is activated while kept under maximum deforma-

tion, the torque generated later in lower strain would be

smaller. To have a conservative estimation of the blocked

torque of the actuators, we activated them in the maximum

deformation and step by step relaxed the strain (it gives a

conservative result because in the antagonistic arrangement

under large stain, the opposing force of the other actuator,

and hence memory loss, is much smaller). Figure 6 presents

the results of the characterization test for folding and unfold-

ing actuators. The blue lines present the torque in the unfold-

ing actuator (with the annealed shape of (-180°) and the red

lines present the torque in the folding actuator (the annealed

shape of complete cylinder). This figure also presents the

elastic relaxation of the inactivated actuator around its equi-

librium point. The small slope of this elastic relaxation im-

plies that when the driving actuator starts to cool down there

will be a rather large relaxation and change in the position.

This makes the feedback control for Robogami modules a

necessity.

The conservative characterization of the blocked torque

predicts around 100° range of motion for the fold with bidi-

rectional actuation (figure 6). This is enough for many appli-

cations. If larger range of motion is required, one could use

a thinner or longer actuators (according to Eqn. (1)). Both of

these decrease the strain level for a given bending angle).

In the blocked torque tests, with heating power of 1.8

W it takes around 15 s for actuators to generate maximum

torque which is not in agreement with initial expectations

based on [13]. To investigate the cause for this slow response

we simulated the transient thermal phenomenon. Neglecting

radiation, the heat transfer equation for SMA is as follow:

ρCṪ +ΔuŻ = qcontact +qconvection + γ(T )ΔT (2)

In this equation, ρ ,C,Δu,γ are density, thermal capac-

ity, latent heat of phase transition, and thermal conductiv-

ity coefficient respectively. T and Z are temperature and the
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Fig. 7: Thermal analysis for an SMA torsional actuator. (a) The temperature

gradient in the actuator and the tiles, corresponding to the instance that all

SMA material has transformed to Austenite phase. (b) SMA phase transition

versus time.



mass in Austenite phase. Heat transfer between SMA and its

surrounding happens through natural convection (qconvection)

and contact with other solid surfaces (qcontact). Here we as-

sumed zero thermal resistance for contact between different

layers. As presented in this equation, the input heat to each

element (right hand side of the Eqn. (2)) divides to two por-

tions. One increasing the temperature (T ) and the second

causes the phase transition (Z).

For other components (glass fiber layers, heater layer,

bolts and nuts) the governing equation is the same as Eqn. (2)

with the difference that there is no latent phase transition heat

and the temperature dependency of thermal conductivity of

the material is negligible (unlike SMA where we have a large

change after phase transition).

For SMA thermal characteristics, we have used the ma-

terial properties from [29]. Figure 7 shows the result of this

thermal analysis. As presented in figure 7a, because of the

location of the heaters, lots of heating power is wasted on

heating up the glass fiber layer. Initially, based on the glass

fiber lower thermal conductivity (20 times less than that of

the SMA) we have expected it to be insulating and to have

little influence on the transient thermal response of the sys-

tem. But as can be seen in figure 7a temperature rise in the

glass fiber layer is substantial. The phase transition in the

SMA actuator versus time (figure 7b) shows that nearly 15

s is needed for complete transition of the SMA to Austenite

phase. In this plot, the slope change during heating is caused

by latent heat of phase transition and also change in thermal

conductivity of SMA in different phases.

To improve the actuator response time, there are two op-

tions: using more insulating layers or placing the heaters

on the active part of the SMA actuators. By relocating the

heaters, we also expect to decrease the rate of the memory

loss in the actuators, due to more uniform temperature distri-

bution.

4 Flexible curvature sensor for Robogami
To characterize the curvature sensor presented in

Figure2, its resistance was measured for different bending

angles. We used a voltage divider circuit to detect the resis-

tance change in the sensors in the repeated cycles of fold-
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sensor versus the bending angle in 50 cycles.The result shows very good re-

peatability and small hysterysis loop compared to conductive silicone based

sensors previously suggested in [13].
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Fig. 9: Three control angles achieved using curvature sensor feedback with

goal set to (a) 60°, (b) 90°, and (c) 120°

ing and unfolding which was performed with 18°increments.

Sensor readings in 50 cycles and the mean value as a func-

tion of bending angle is presented in figure 8. We have nor-

malized the readings with the maximum amplitude of volt-

age change in this figure. Other than robustness and im-

proved repeatability, this plot presents another advantage of

this sensors over conductive silicone-based sensors which is

the smaller hysteresis loop. The average standard deviations

for this sensor is 1.1°. This is an improvement compared to

the previous results [13]. To sum up, sensors made of con-

ductive ink track on polyimide sheet are more accurate, ro-

bust, and reliable. The only limitation on application of these

sensors is that unlike conductive silicone based sensors, these

are not stretchable which for the case of a curvature sensors

is not important. The characterization result presented here is

very brief and only covers quasi static readings in repeating

cycles (which is also the case for the Crawler application). A

more detailed study on transient response and drift in sensor

readings as well as a model for explaining the response of

the sensors is the topic for future studies.

In the characterization tests, we deformed the sensors in

pure bending. In the case of bidirectional actuation, a small

twist also occurs in the folding area. This is because of the

torque in the passive actuator, which is a function of its tem-

perature. This makes the shape of the sensor slightly differ-

ent in the consecutive cycles. To study the effect of this twist

on the sensor performance, here the accuracy of the sensor

is measured in the feedback control of a module with bidi-

rectional actuation. The test scenario is the same as what is

needed for locomotion of the Crawler. Based on the desired

bending angle and the current bending angle, an on-off con-

troller with a small dead-band decides to activate the folding

or unfolding actuators. Figure 9 presents snapshots of the

three control angles (60°, 90°, and 120°). We have studied

feedback control in five cycles. The average of the standard

variation for these three angles was 1.4°which shows a very

good accuracy. This is because of more repeatable readings

from the sensors and the minimized effect of the twist error

in the sensors with the polyimide backing.

5 Robogami Crawler : four-legged mobile Robogami
Robogami is a multi DoF, low profile robot that per-

forms different tasks by reconfiguring its shape. Here, we

use a mobile robot consisting of four folding modules (fig-

ure 1a) as a case study to assess the performance of the ac-

tuators, the sensors, and the overall design of the Robogami.
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Fig. 10: The equivalent mechanisms for different phases of locomotion. (a-d) represent the phases number 1-4 introduced in Table 1 respectively. Figure

(a) and (c) show the view of the robot from the back along the locomotion direction which presents the motion of active legs in these two phases (leg 1-3).

Legs 2 and 4 that are presented in pink are inactive in these two states. Figure (b) and (d) show the view of the robot from the side and normal to the

locomotion direction to present the motion of active legs in these two phases (leg 2-4). Legs 1 and 3 that are presented in blue are inactive in these two

states.

In this section, we study torques needed for locomotion of

the crawler robot and present the locomotion of the robot in

experiment.

5.1 Robogami Crawler: stepping sequence
Here we present the stepping sequence of the Robogami

crawler, evaluate the torque needed for its locomotion, and

compare that to the blocked torque from characterization

tests. There are four phases in the Crawler locomotion as

presented in Table 1. The angles in this table are those be-

tween the legs and the center tile. Shaded cells in the table

indicate legs that bear the weight of the robot in each phase

while the other two legs have no contact with the surface and

can move without any contact force. Figure 10 shows the

corresponding mechanism for each phase.

Since the speed and acceleration of the robot are small

(given the slow response of SMA actuators), here, we cal-

culate the actuation torque necessary for locomotion in the

quasi static state. The torque required in phase 2 and 3 are

clearly smaller than the torque needed in phase 1 and 4. So

here we only study forces in phase 1 and 4. We start with in-

vestigating the required torque in phase 4 which is presented

in figure 10d. This figure shows a general case that corre-

sponds to out of sync motion of leg 2 and 4 but to evaluate the

torque needed for locomotion in this phase, we considered in

sync motion of the two legs which is the ideal case for the

locomotion (θ2 = θ4,θb = 0). The more general represen-

tation of the figure however, helps with explanation of the

Table 1: The goal angles for each leg in four phases of locomotion. The

shadowed cells indicate the legs on the ground

Phase 1 Phase 2 Phase 3 Phase 4

Leg # 1 90° 90° 45° 45°

Leg # 2 135° 45° 45° 135°

Leg # 3 90° 90° 45° 45°

Leg # 4 45° 135° 135° 45°

slippage in phase 4 of locomotion which will be discussed

shortly. For the normal forces in phase 4 we have:

N2Lb = (mb +2ml)g(
Lb

2
+Ll sinθ2,4)

+m1gLl sinθ2,4 +mlgLb

(3)

N4Lb = (mb +2ml)g(
Lb

2
−Ll sinθ2,4)

−mlgLl sinθ2,4 +mlgLb

(4)

Considering in sync motion and small acceleration, the

horizontal force at at the contact point is assumed to be zero

and the drive torque for this phase is calculated as:

τ2,4 = N2,4Ll sinθ2,4 −mlg
Ll

2
sinθ2,4 (5)

In Eqn. (3)-(5) N and τ are the normal force, and the

drive torque in each leg. L1, Lb are the leg and the center

tile lengths which are 22 mm and 44 mm, respectively. The

dimensions of the robot were designed to prevent it from trip-

ping. ml , mb are the leg and center tile mass which are 0.9

g and 3.7 g, respectively. Considering 90°range of motion,

the maximum torque in this phase of locomotion (Eqn. (5))

is 0.83 mNm.

In phase 1 of locomotion (figure 10a), the required

torques for leg 1 and 3 are given as Eqn. (6).

τ1,3 =
mb +4ml

2
(gLl sinθ1,3 +μgLl cosθ1,3)

−m1gLl sinθ1,3

(6)

The required torque in phase 1 is dependent on the fric-

tion coefficient, μ , which can be managed by choosing the

right material at the point of contact. Because of the small
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Fig. 11: The sequence of the motion of the Crawler. (e,i) show phase 1, (b,f,j) phase 2, (c,g,k) phase 3, and (d,h,l) phase 4.

acceleration, even small friction forces can secure locomo-

tion without any slip in phase 4. So based on the design, the

torque required for this phase can be made smaller than what

we get for phase 4 (this torque is enough for motion on sur-

face with friction coefficient of 0.65 in phase 1) which is an

order of magnitude smaller than the torque in the passive ac-

tuator measured in blocked torque test (figure 6). Therefore,

the deciding factor on range of motion of the joints in the

Robogami crawler is the torque in the antagonistic actuators.

During phase 4 of the locomotion, the ideal step size for

the robot is 2L1 sinθmax. But in the experiments, each step is

smaller because of the slip between the legs and the surface.

To investigate the reason for this, we have studied forces dur-

ing this phase. If both legs move together, the friction force

will push the robot forward. But what happens in the experi-

ments is that one of the legs starts moving a little faster than

the other. This causes the leg that is moving to push the body

forward while the other one is resisting the locomotion. This

out of sync motion results in a configuration similar to fig-

ure 10d. In general the leg closer to the center of mass has

larger normal force so if the forward leg starts moving first,

in the beginning and final part of the motion the normal force

of the active leg (front in the beginning part and hind leg in

the final part) will be smaller than the passive one and the ac-

tive leg slides which means that the step size will be smaller

than the ideal one.

On the other hand, if the hind leg starts moving first,

active leg will always have the higher normal and friction

force and the step size will be the same as the ideal one. At

the moment we activate both legs at once and do not control

the leg position before reaching the goal angle. This leads

to out of sync motion and slip in some parts of motion and

hence smaller step size.

5.2 Robogami Crawler: locomotion
In this section, the results of the experiment on the robot

are presented. The controller decides the goal angles for each

leg based on the phase of locomotion of the robot and us-

ing the feedback from the sensors, determines when the goal

configuration is achieved and switches to the next phase. In

each phase, based on the actual and desired goal angles, an

on-off controller activates the actuators to reach the desired

angle. Due to the fluctuation around the equilibrium point in

each leg, reaching the goal angle on all legs might not hap-

pen at once. So, Each phase is considered complete if all legs

have reached their goal angle once from the beginning of that

phase. Figure 11 presents series of the snapshots taken from

the Crawler as it moves three steps.

The series of the snapshots of figure 11 indicates that the

bidirectional folds that are activated by the SMA actuators,

feedback that is provided by the carbon ink printed sensors,

the controller and the overall design of the Robogami are all

effective. Also, the controller circuit successfully closes the

loop using the sensor reading and generate the appropriate

command. The locomotion of the robot is rather slow which

can be alleviated in future, by moving the heaters to the ac-

tive part of the actuators as suggested in [17]. In phase 4 of

the locomotion, due to the relaxation in legs number 1 and

3, these two legs touch the ground. This effect in addition to

the out of sync motion makes the step size smaller and loco-

motion slower. Solving these problems will be a topic for the

future studies.

6 Conclusions and future work
In this paper, the bidirectional actuation using SMA tor-

sional sheet actuators, feedback control using carbon ink

based sensors and overall design for the Robogami were

presented and the performance of the proposed components

were studied in a single module and a mobile robot consist-

ing of four modules as legs.

The flexible curvature sensors were fabricated by print-

ing carbon ink tracks on polyimide sheet and embedded in

the Robogami modules. To improve the response of the sen-

sor, the surface of the polyimide layer was scored with laser



(prior to applying the carbon ink) in order to make lines

of stress concentration in the carbon layer. These sensors

are very robust and they have small hysteresis in their re-

sponse. The average standard deviations for this type of sen-

sor in 50 cycles of folding and unfolding was measured to be

1.1°. Also the average of the standard deviation for reaching

three goal angles (60°, 90°, 120°) in feedback control of one

module was 1.4°. These results show an improvement over

what was achieved previously using other types of sensors

for Robogami.

In this research, the Robogami Crawler consisting of

four folding modules was designed and prototyped to assess

the performance of actuators, sensors, and layer by layer fab-

rication of the Robogami. The blocked torque of the actua-

tors was measured (5 -16 mNm in the whole range of motion)

to ensure that they are capable of producing enough torque

(0.83 mNm) for carrying the Crawler’s weight. The experi-

mental results confirmed that the actuators can provide large

enough range of motion in each leg, the sensors can pro-

vide robust and reliable feedback for angle control in legs

and finally the design for the circuit and other parts can en-

dure high deformations. In more complicated Robogamis

with a large number of folding areas, attaching the wires

for transferring the data and the order between the controller

and the robot would not be feasible. Therefore, a control

circuit was designed and embedded in the Robogami which

gets the feedback from the sensors and produces the com-

mand for the actuators accordingly. The Robogami Crawler

presented here is the first example toward a fully integrated

planar robotic system that can transform its shape using com-

ponents embedded in it. In future, by embedding the power

source such a system can become completely autonomous.

The work presented here paves the way toward fabrication

of more complex Robogamis, with more folding areas (DoF),

capable of performing more complicated tasks in future.
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