6 research outputs found

    Metabolic cold acclimation of 'Polka' and 'Honeoye' strawberries under natural field conditions

    No full text
    The winter hardiness of strawberry varieties used in perennial production systems varies greatly. Still, little information is available on how plant metabolism adapts to cold and freezing temperatures under natural temperature and light conditions. In order to examine the hardening process of overwintering meristematic tissue in Fragaria ananassa, crown samples of field-grown var. ‘Polka’ and ‘Honeoye’ were consecutively collected over a period of 15 weeks, i.e. from the end of the season (week 35/ end August) until midwinter (week 50/ December). Samples were subjected to qGC MS metabolite profiling to assess the reconfiguration of central metabolism, and characterize the regulation of selected compatible solutes. Besides changes in amino acid patterns (glutamic acid, aspartic acid, and asparagine), monosaccharide levels (fructose) increased strongly in ‘Honeoye’ (180 fold compared to start control) towards the end of the acclimation period. In contrast, ‘Polka’ showed a concentration peak (36-fold) in week 47 and a decline towards week 50. Also sucrose levels were steadily increased throughout the cold hardening period with averagely 6-fold higher levels in ‘Honeoye’ compared to ‘Polka’, thus underscoring cultivar-dependent differences. However, both varieties showed a decline in sucrose levels after week 47. Particularly, the raffinose pathway was affected leading to strongly and transiently increased levels of the precursor galactinol (week 42/ mid-October) and the trisaccharide raffinose (weeks 43 to 47/ end October to mid-November). While galactinol biosynthesis was earlier induced in ‘Polka’ (week 38) compared to ‘Honeoye’ (week 39), subsequent raffinose production was delayed in ‘Polka’ (week 47) compared to ‘Honeoye’ (week 45). Major metabolic changes in both varieties coincided with a decrease in day length below 14 h in mid-September, and a consistent drop below 10°C average day temperature by the end of September

    Metabolic cold acclimation of 'Polka' and 'Honeoye' strawberries under natural field conditions

    No full text
    The winter hardiness of strawberry varieties used in perennial production systems varies greatly. Still, little information is available on how plant metabolism adapts to cold and freezing temperatures under natural temperature and light conditions. In order to examine the hardening process of overwintering meristematic tissue in Fragaria ananassa, crown samples of field-grown var. ‘Polka’ and ‘Honeoye’ were consecutively collected over a period of 15 weeks, i.e. from the end of the season (week 35/ end August) until midwinter (week 50/ December). Samples were subjected to qGC MS metabolite profiling to assess the reconfiguration of central metabolism, and characterize the regulation of selected compatible solutes. Besides changes in amino acid patterns (glutamic acid, aspartic acid, and asparagine), monosaccharide levels (fructose) increased strongly in ‘Honeoye’ (180 fold compared to start control) towards the end of the acclimation period. In contrast, ‘Polka’ showed a concentration peak (36-fold) in week 47 and a decline towards week 50. Also sucrose levels were steadily increased throughout the cold hardening period with averagely 6-fold higher levels in ‘Honeoye’ compared to ‘Polka’, thus underscoring cultivar-dependent differences. However, both varieties showed a decline in sucrose levels after week 47. Particularly, the raffinose pathway was affected leading to strongly and transiently increased levels of the precursor galactinol (week 42/ mid-October) and the trisaccharide raffinose (weeks 43 to 47/ end October to mid-November). While galactinol biosynthesis was earlier induced in ‘Polka’ (week 38) compared to ‘Honeoye’ (week 39), subsequent raffinose production was delayed in ‘Polka’ (week 47) compared to ‘Honeoye’ (week 45). Major metabolic changes in both varieties coincided with a decrease in day length below 14 h in mid-September, and a consistent drop below 10°C average day temperature by the end of September

    Metabolic cold acclimation of 'Polka' and 'Honeoye' strawberries under natural field conditions

    Get PDF
    The winter hardiness of strawberry varieties used in perennial production systems varies greatly. Still, little information is available on how plant metabolism adapts to cold and freezing temperatures under natural temperature and light conditions. In order to examine the hardening process of overwintering meristematic tissue in Fragaria ananassa, crown samples of field-grown var. ‘Polka’ and ‘Honeoye’ were consecutively collected over a period of 15 weeks, i.e. from the end of the season (week 35/ end August) until midwinter (week 50/ December). Samples were subjected to qGC MS metabolite profiling to assess the reconfiguration of central metabolism, and characterize the regulation of selected compatible solutes. Besides changes in amino acid patterns (glutamic acid, aspartic acid, and asparagine), monosaccharide levels (fructose) increased strongly in ‘Honeoye’ (180 fold compared to start control) towards the end of the acclimation period. In contrast, ‘Polka’ showed a concentration peak (36-fold) in week 47 and a decline towards week 50. Also sucrose levels were steadily increased throughout the cold hardening period with averagely 6-fold higher levels in ‘Honeoye’ compared to ‘Polka’, thus underscoring cultivar-dependent differences. However, both varieties showed a decline in sucrose levels after week 47. Particularly, the raffinose pathway was affected leading to strongly and transiently increased levels of the precursor galactinol (week 42/ mid-October) and the trisaccharide raffinose (weeks 43 to 47/ end October to mid-November). While galactinol biosynthesis was earlier induced in ‘Polka’ (week 38) compared to ‘Honeoye’ (week 39), subsequent raffinose production was delayed in ‘Polka’ (week 47) compared to ‘Honeoye’ (week 45). Major metabolic changes in both varieties coincided with a decrease in day length below 14 h in mid-September, and a consistent drop below 10°C average day temperature by the end of September

    Dehydrin, alcohol dehydrogenase, and central metabolite levels are associated with cold tolerance in diploid strawberry (Fragaria spp.)

    No full text
    The use of artificial freezing tests, identification of biomarkers linked to or directly involved in the low-temperature tolerance processes, could prove useful in applied strawberry breeding. This study was conducted to identify genotypes of diploid strawberry that differ in their tolerance to low-temperature stress and to investigate whether a set of candidate proteins and metabolites correlate with the level of tolerance. 17 Fragaria vesca, 2 F. nilgerrensis, 2 F. nubicola, and 1 F. pentaphylla genotypes were evaluated for low-temperature tolerance. Estimates of temperatures where 50 % of the plants survived (LT50) ranged from −4.7 to −12.0 °C between the genotypes. Among the F. vesca genotypes, the LT50 varied from −7.7 °C to −12.0 °C. Among the most tolerant were three F. vesca ssp. bracteata genotypes (FDP821, NCGR424, and NCGR502), while a F. vesca ssp. californica genotype (FDP817) was the least tolerant (LT50 −7.7 °C). Alcohol dehydrogenase (ADH), total dehydrin expression, and content of central metabolism constituents were assayed in select plants acclimated at 2 °C. The LT50 estimates and the expression of ADH and total dehydrins were highly correlated (r adh = −0.87, r dehyd = −0.82). Compounds related to the citric acid cycle were quantified in the leaves during acclimation. While several sugars and acids were significantly correlated to the LT50 estimates early in the acclimation period, only galactinol proved to be a good LT50 predictor after 28 days of acclimation (r galact = 0.79). It is concluded that ADH, dehydrins, and galactinol show great potential to serve as biomarkers for cold tolerance in diploid strawberry

    Dehydrin, alcohol dehydrogenase, and central metabolite levels are associated with cold tolerance in diploid strawberry (Fragaria spp.)

    Get PDF
    The use of artificial freezing tests, identification of biomarkers linked to or directly involved in the low-temperature tolerance processes, could prove useful in applied strawberry breeding. This study was conducted to identify genotypes of diploid strawberry that differ in their tolerance to low-temperature stress and to investigate whether a set of candidate proteins and metabolites correlate with the level of tolerance. 17 Fragaria vesca, 2 F. nilgerrensis, 2 F. nubicola, and 1 F. pentaphylla genotypes were evaluated for low-temperature tolerance. Estimates of temperatures where 50 % of the plants survived (LT50) ranged from −4.7 to −12.0 °C between the genotypes. Among the F. vesca genotypes, the LT50 varied from −7.7 °C to −12.0 °C. Among the most tolerant were three F. vesca ssp. bracteata genotypes (FDP821, NCGR424, and NCGR502), while a F. vesca ssp. californica genotype (FDP817) was the least tolerant (LT50 −7.7 °C). Alcohol dehydrogenase (ADH), total dehydrin expression, and content of central metabolism constituents were assayed in select plants acclimated at 2 °C. The LT50 estimates and the expression of ADH and total dehydrins were highly correlated (r adh = −0.87, r dehyd = −0.82). Compounds related to the citric acid cycle were quantified in the leaves during acclimation. While several sugars and acids were significantly correlated to the LT50 estimates early in the acclimation period, only galactinol proved to be a good LT50 predictor after 28 days of acclimation (r galact = 0.79). It is concluded that ADH, dehydrins, and galactinol show great potential to serve as biomarkers for cold tolerance in diploid strawberry

    Proteomic study of low temperature responses in strawberry cultivars (Fragaria x ananassa Duchesne) that differ in cold tolerance

    Get PDF
    To gain insight into the molecular basis contributing to overwintering hardiness, a comprehensive proteomic analysis comparing crowns of Fragaria × ananassa (octoploid strawberry) cultivars that differ in freezing tolerance was conducted. Four cultivars were examined for freeze tolerance and the most cold-tolerant cultivar (‘Jonsok’) and least tolerant cultivar (‘Frida’) were compared with a goal to reveal how freezing tolerance is achieved in this distinctive overwintering structure and to identify potential cold-tolerance associated biomarkers. Supported by univariate and multivariate analysis, a total of 63 spots from 2DE analysis and 135 proteins from label-free quantitative proteomics (LFQP) were identified as significantly differentially expressed in crown tissue from the two strawberry cultivars exposed to 0, 2, and 42 day cold treatment. Proteins identified as cold tolerance associated included molecular chaperones, antioxidants/detoxifying enzymes, metabolic enzymes, pathogenesis related proteins and flavonoid pathway proteins. A number of proteins were newly identified as associated with cold tolerance. Distinctive mechanisms for cold tolerance were characterized for two cultivars. In particular, the ‘Frida’ cold response emphasized proteins specific to flavonoid biosynthesis, while the more freezing tolerant ‘Jonsok’ had a more comprehensive suite of known stress responsive proteins including those involved in antioxidation, detoxification, and disease resistance. The molecular basis for ‘Jonsok’ enhanced cold tolerance can be explained by the constitutive level of a number of proteins that provide a physiological stress-tolerant “poise”
    corecore