13 research outputs found

    Sawtooth-like thermopower oscillations of a quantum dot in the Coulomb blockade regime

    Get PDF
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe

    Observation of excess conductance of a constricted electron gas in the fractional quantum Hall regime

    Get PDF
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe

    Contacts and Edge State Equilibration in the Fractional Quantum Hall Effect

    Full text link
    We develop a simple kinetic equation description of edge state dynamics in the fractional quantum Hall effect (FQHE), which allows us to examine in detail equilibration processes between multiple edge modes. As in the integer quantum Hall effect (IQHE), inter-mode equilibration is a prerequisite for quantization of the Hall conductance. Two sources for such equilibration are considered: Edge impurity scattering and equilibration by the electrical contacts. Several specific models for electrical contacts are introduced and analyzed. For FQHE states in which edge channels move in both directions, such as ν=2/3\nu=2/3, these models for the electrical contacts {\it do not} equilibrate the edge modes, resulting in a non-quantized Hall conductance, even in a four-terminal measurement. Inclusion of edge-impurity scattering, which {\it directly} transfers charge between channels, is shown to restore the four-terminal quantized conductance. For specific filling factors, notably ν=4/5\nu =4/5 and ν=4/3\nu=4/3, the equilibration length due to impurity scattering diverges in the zero temperature limit, which should lead to a breakdown of quantization for small samples at low temperatures. Experimental implications are discussed.Comment: 14 pages REVTeX, 6 postscript figures (uuencoded and compressed

    Impurity scattering and transport of fractional Quantum Hall edge state

    Full text link
    We study the effects of impurity scattering on the low energy edge state dynamic s for a broad class of quantum Hall fluids at filling factor ν=n/(np+1)\nu =n/(np+1), for integer nn and even integer pp. When pp is positive all nn of the edge modes are expected to move in the same direction, whereas for negative pp one mode moves in a direction opposite to the other n−1n-1 modes. Using a chiral-Luttinger model to describe the edge channels, we show that for an ideal edge when pp is negative, a non-quantized and non-universal Hall conductance is predicted. The non-quantized conductance is associated with an absence of equilibration between the nn edge channels. To explain the robust experimental Hall quantization, it is thus necessary to incorporate impurity scattering into the model, to allow for edge equilibration. A perturbative analysis reveals that edge impurity scattering is relevant and will modify the low energy edge dynamics. We describe a non-perturbative solution for the random n−n-channel edge, which reveals the existence of a new disorder-dominated phase, characterized by a stable zero temperature renormalization group fixed point. The phase consists of a single propagating charge mode, which gives a quantized Hall conductance, and n−1n-1 neutral modes. The neutral modes all propagate at the same speed, and manifest an exact SU(n) symmetry. At finite temperatures the SU(n) symmetry is broken and the neutral modes decay with a finite rate which varies as T2T^2 at low temperatures. Various experimental predictions and implications which follow from the exact solution are described in detail, focusing on tunneling experiments through point contacts.Comment: 19 pages (two column), 5 post script figures appended, 3.0 REVTE

    Low temperature current transport of Sn-GaAs contacts

    Get PDF
    We measure low temperature current transport properties of superconducting Sn contacts to p+-GaAs. For contacts alloyed at 450 °C, the current-voltage characteristics show a strong dependence on alloying time. The critical temperature of Sn near the superconductor-semiconductor interface decreases from 3.8 to 1.8 K as the alloying time increases from 0 to 120 s. On the other hand, a long-time alloying increases the transparency of the interface. Using the Blonder, Tinkham, and Klapwijk model, we find that the transmission coefficient of the interface increases from 0.2 to 0.7 by alloying. However, the normal state resistance calculated using the model is much smaller than the experimental value.
    corecore