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Coulomb charging of a quantum dot in the presence of
adiabatically transmitted edge channels
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Wc present measurements of the conductance of a quantum dot in the presence of 2, l and 0 adiabatically transmitted
edge channels In all threc cases penodic conductance oscillations are observed äs a function of gate voltage By usmg the
oscillations observed in the absence of transmitted edge channels äs an clection counter we demonstrate that the
oscillations observed in the presence of transmitted edge channels are due to the mfluence of Coulomb charging Usmg a
simple model calculation we show that the activation energy for tunneling via an intermediate state in the confined edge
channel oscillates penodically äs a function of the Fermi energy, in qualitative agrcement with the expenment

1. Introduction

Using current lithographic techniques it is
possible to fabricate a zero-dimensional conduct-
ing Island, or quantum dot, in the two-dimen-
sional electron gas (2DEG) of a gated AlGaAs/
GaAs heterostructure. These dots have gener-
ated a great deal of interest. At low tempera-
tures, the influence of both the confined energy
level spacing and the Coulomb charging energy
can be observed in the dot conductance. A
typical quantum dot device is shown in fig. l (a).
The dot is connected to two leads by adjustable
quantum point contacts (QPCs), while the den-
sity is varied by the voltage VB on an indepen-
dent gate electrode. In a high magnetic field, the
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conductance of the QPCs is approximately given
by [1]

(1)

with ./Vtrans the number of edge channels that are
fully transmitted over the barrier in the constric-
tion, and f = £ l the tunneling transmission prob-
ability of the (Ntrdns + l}th edge channel. The
(/Vlians + l)th edge channel corresponds to the
lowest index Landau level (LL) that is confined
to the dot. Edge channels corresponding to
higher index LLs are nearly completely reflected.

The states confined to the dot form a discrete
energy spectrum, with average energy spacing
§E. For a non-interacting electron gas, a peak in
the conductance due to resonant tunneling is
observed if an electron state in the dot lines up
with the Fermi level in the leads, EP. This results
in periodic conductance oscillations äs VB is
varied and the energy spectrum moves through
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Fig l (a) Schcmatic. drawmg of thc quantum dot dcviccs
The dimcnsions ot tht rcctangle formcd hy thc gatcs is
7SO n m x 800 um for dot I and 700 nm x 900 um for dot II
(h) (d) Cniicnt paths Ihrough the dot m thc picsLiicx oi 2 l
or 0 adiabcitioally Uansmittcd cdgc channels äs adjustcd hy
K. and K„

E, It has recently been demonstrated [2], how-
ever, thdt tunnehng through a quantum dot can
also bc governed by the Coulomb charging
energy for a smgle tunnehng electron This effect
is dominant if the capacitance of the dot C is
small so that the charging energy e I2C is
substantially larger than δ£ Since the charging
eneigy vanes penodically with the electron dcn-
sity in the dot, Coulomb interactions also
produce conductance oscillations penodic in VB

(Coulomb blockade oscillations)
In a high magnetic field, smgle electron chaig

mg cffects are known to be important if the
conductance of the pomt contacts Gpt <e21 h In
this case each edge channel is at least partiallv
backscattered and all transport through the dot is
due to tunnehng (fig l(d)) If G > e Ih, one or

more edge channels arc adiabatically transmitted
through the dot (i e Ntl i n s = 2 or l äs shown m
hgs l(b) and (c)) Smce these edge channels are
extended rather than locahzed in the dot one
might thmk that Coulomb charging is sup
pressed Conductance oscillations observed in
this regime äs a function of magnetic field [3] and
äs a function of gate voltage [4] have thus been
attnbuted to resonant tunnehng, (or equivalently
the Aharonov-Bohm effect [5])

In a recent papcr [6], however, we demon-
strated the importance of Coulomb charging in
the presence of extended edge channels Here,
we present more extensive data from measure-
ments of two additional quantum dot devices
that confirm this conclusion In bpth devices, we
observe penodic conductance oscillations äs a
function of gate voltage m the presence of 2, l
and 0 adiabatically transmitted edge channels
Followmg the method of lef [6] we use the
oscillations obseived in the füll Coulomb block-
ade regime äs an electron counter, and show that
Coulomb charging has a strong mfluence on the
penod of the conductance oscillations, even in
the presence of extended edge channels In
addition, we present a thcorctical calculation [7]
of the activation energy foi charge transfer from
an extended to a locahzed channel, assummg an
electron-electron intcraction mediated by a
Thomas-Fermi potcntial This is compared with
the activation energy dctcrmmcd expenmentally
from the tempeiature dependence of the con-
ductance mmima

2. Experiment

The geometry of our two quantum dot devices
(dot I and dot II) is shown schematically m fig
l(a) [8] Four gatcs (labelled Α-D) define a
rectangle on the surface of an AlGaAs/GaAs
heterostructure with a 2DEG of mobihty μ ~
10 6 cm'/Vs and density n s = 3x K)"cm 2 The
hthographic dimensions of dot I are 750 x
800 nm ? and those of dot II are 700x900nm 2

When the gates are ncgatively biased, a quantum
dot is formed in the underlymg 2DEG, and is
connected thiough two QPCs to two-dimensional
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leads. Two-terminal conductance measurements
are made across the dot using an ac lock-in
technique with an excitation voltage below
10 μΥ In the experiments, the voltage on gate D
is left fixed, and the voltages on gates A and C
are adjusted to control the transmission through
the tunnel barriers in the QPCs. The conduct-
ance is then measured äs a function of the
voltage on gate B which determines the electron
density in the dot.

Fig. 2 shows the results of conductance mea-
surements of dot I äs a function of VB for a
magnetic field of .8 = 3.50 T and a temperature
of 50 mK. The QPCs are adjusted so that there
are Wtrans = 2, l and 0 edge channels adiabatical-
ly transmitted through the dot for traces (a), (b)
and (c), respectively. This corresponds to the
following QPC conductances: (a) 2e2/h<Gpc<
3e2/h, (b) e2/h<Gpc<2e2/h, and (c) Gpc <
e l h. Each trace shows a series of nearly periodic
oscillations in the conductance äs a function of
VB, however the period of the oscillations varies
from trace to trace. There are 53 oscillations in
(a), 80 in (b), and 102 in (c), indicating that the
period in (a) is about twice that in (c), while the
period in (b) is about 1.2 times that in (c).

Fig. 3 compares the conductance oscillations
from measurements made at four different mag-
netic fields (2.75, 3.50, 4.20 and 4.60T). In each
case the QPCs are adjusted so that 2<?2//z <
Gpc<3e2/h, i.e. yVtrans = 2. Between 2.75 and
4.60 T periodic conductance oscillations are ob-
served whose period increases with magnetic
field; the amplitude of the oscillations drops off
rapidly outside of this field ränge. In the Wtrans =
l case (e2/h<Gpc<2e2/h) (not shown) oscilla-
tions are observed for magnetic fields less than
7 T and the period of the oscillations again
increases with increasing magnetic field. For the
^trans= 0 case, however, oscillations are ob-
served irrespective of the magnetic field and the
period of the oscillations is field independent.

3. Model

The Coulomb charging energy for the dot e2/
2C — e2/8ed~0.25 meV, is greater than kT for

temperatures up to 3 K. Thus the very regulär
oscillations observed in the absence of adiabati-
cally transmitted edge channels (the bottom
trace in fig. 2) can safely be attributed to the
Coulomb blockade effect. The gate voltage Sepa-
ration between peaks is ~e/Cgate where Cgatc,
the capacitance between gate B and the dot, is
assumed to be independent of Gpc. This is
reasonable since Gpc is much more sensitive to
changes in voltages VA and Vc than are the size
of the dot and the dot-gate Separation (which
together determine C ,c). Since each Coulomb
blockade peak corresponds to the removal of
one electron from the dot, this allows us to use
the Coulomb blockade oscillations in a novel
way: äs a tool to determine the mechanism that
governs the period of the oscillations seen at
higher barrier transparencies. The number of
electrons per peak for the upper traces in fig. 2
can be determined by dividing the number of
Coulomb blockade peaks counted for Af t r ans = 0
into the number of peaks for jVtrans = l or 2. The
results of this procedure performed on a set of
measurements of the type shown in figs. 2 and 3
are plotted versus magnetic field in fig. 4. The
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Fig 2 Conductance of dot I äs a function of the voltage on
gate B for B = 3 5 T and T= 50 mK In the top, middle, and
bottom traces (a)-(c), QPCs are adjusted to conductances of
2 5 , 1 5 and 0 5e2/h, respectively The three cases correspond
to the three possiblc current paths shown in figs l(b)-(d)
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Fig 3 Conductancc of dot I äs a function of the voltage on
gatc B for Gpi = 25e^/h (N l l l n s = 2) at four different mag-
nctic helds (Γ='50ηιΚ)

3 4 5 6 7

B (T)

Fig 4 Penod of the conductancc oscillations (m units of
electrons per peak) versus magnetic field for Gpt = 2 5 e 2 / / i
(circlcs) and Gpt = l 5e2/h (squares) The solid hnes are
theoretical fits for W l r l n s = 2 , 1 adiabatically transmitted edge
channels (see text)

number of electrons per peak is considerably
larger for N t rdns = 2 than for W t l d n s = l. In both
cascs, an increase in magnetic field results in an
increase in the number of electrons per peak.

We now consider the periodic conductance

oscillations for Gpc>e2/h (traces (a) and (b) in
flg. 2). The simplest possibility is to ignore
Coulomb charging. As discussed in the intro-
duction, then a peak in the conductance is
observed due to resonant tunneling when an
electron state of the outer most confined LL
lines up with the Fermi energy in the leads. The
frequency at which this occurs corresponds to the
rate at which electrons are removed from the
outermost confined LL. The total number of
spin-split LLs in the dot 7Vdot is made up of the
yV t o n l LLs of guiding center energy Eg below the
barrier height Eb and the W t r d n s additional LLs
that are occupied in the dot but fully transmitted
over the barriers in the QPCs (£,, < Eb). Assum-
ing that both the Nwnl and the W t r a n i LLs are
depleted at about the same rate, the number of
electrons per peak should be simply Näol. This
argument prcdicts that the number of electrons
per peak should decrease, rather than increase
with magnetic field, m contradiction with the
observed results (fig. 4). This discrepancy could
in principle be eliminated if resonant tunneling
through electron states of the confined LLs with
index higher than Af t r d n s + l also contributes to
the conductance of the dot. The tunneling rate,
however, decreases exponentially with decreas-
ing £g [9], thus, there should be an Order of
magnitude modulation of conductance peak
heights due to resonant tunneling through states
belongmg to consecutive LLs confined in the dot
[10]. This is not observed in our experiment,
however [11].

We can model the results of fig. 4, though, if
we take Coulomb charging into account for
G p c>e 2 / /z . We extend recent arguments for the
iV trans = 0 case [12] to our problem by considering
a separate Coulomb charging energy of the 7Vconf

LLs existing in the presence of the adiabatically
transmitted edge channels. This is reasonable,
since a magnetically induced tunnel barrier con-
sisting of an incompressible electron gas region
exists between each of the edge channels. Reson-
ant tunneling electrons thus face a non-zero
Coulomb charging energy associated with a
change in the electron population of the confined
LLs. This leads to Coulomb blockade oscillations
äs a function of gate voltage with a period
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corresponding to the removal of an electron
from any one of the Ncon( LLs. The removal of
electrons from one of the Ntrans LLs in the dot
does not give rise to a conductance peak because
charge in these levels is not localized and can
therefore be changed continuously. This implies
that

electrons N,conf •'"Irans '"dot

peak AL (2)

Fig. 4 shows Solutions of eq. (2) for W t rdns = l
and N trdns = 2. We determine Ndot by measuring
the conductance of the dot with the two QPCs
completely open (VA = VC = 0). The agreement
between our model and the experimental results
is very good. In both cases, the number of
electrons per peak is seen to increase äs Ndot

decreases from 5 to 3. This comparison dem-
onstrates then that Coulomb charging effects
dominate even though Gpc>e2/h.

4. Activation energy calculation

In this section we present a simple model
calculation of the activation energy for single
electron tunneling in the presence of adiabatical-
ly transmitted edge channels [7]. We begin by
considering a dot containing two edge channels,
one confined and one extended (inset (a) of fig.
5). We seek the activation energy for an electron
tunneling from the leads into the confined edge
channel (indicated by the arrow in the inset (a)
of fig. 5) äs a function of the Fermi energy in the
leads. Since the extended edge channel is con-
nected directly to the leads, adding an electron
to the confined edge channel results in the
appearance of a positive image Charge on the
extended edge channel. The change in the
charge distribution of the dot is thus equivalent
to a single electron tunneling from the extended
edge channel into the confined edge channel, äs
shown in inset (b). What is neglected here is a
possible contribution from image charges in the
leads. In other words, we consider only the
self-capacitance of the dot, and neglect the
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Fig 5 Activation energy äs a function of Fermi energy for a
quantum dot with two edge channels occupied, one extended
and one localized The inset is discussed m the text

capacitance to the leads, which originales at the
tunnel barriers.

For the total electrostatic energy of the dot we
use the self-consistent Thomas-Fermi model
proposed by McEuen et al. [12],

U = Σ (<oc(n + i) + 8μΒΒί)ΝΠί + f dV Vcxl(r)p(r)
n ,s ^

+ lJd2r|dWe e(r-r')p(r)p(r'). (3)

The index n = 0, l, 2 , . . . labels the Landau
levels, the index s = ±^ labels the spins polariza-
tion. The sum over n and s gives the kinetic and
Zeeman energy of the Nns electrons in each
Landau level (wc = eB/m is the cyclotron fre-
quency and gμBB the Zeeman Splitting). The
integrals over the areal electron density p (r) give
the confinement and interaction energy in the
approximation of a slowly varying electron den-
sity. We take a parabolic confining potential
Vext(r) =4m<uor2. As in ref. [12], the electron-
electron interaction potential is modeled by

(4)

to mclude the effects of the finite thickness δ of
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the 2DEG layer and the image Charge on a gate
clectrode at a distance d above the 2DEG. In
our numcrical work we took Αω() = 0.9 meV, δ =
50 Ä, d = 100 Ä and dielectric constant e = 13.6.

Our qualitative conclusions are not sensitive to
the spccific value of the parameters used in our
numerical work. However we had difficulty
doing a quantitative comparison with the experi-
mcnt. In the expcriment the distance between
the gate electrode and the 2DEG is around
1000 Ä. We found that using d = 1000 Ä in our
model calculation requires a much too large
Fermi energy in the reservoirs, in ordcr to
populate the two lowest Landau levels in the
dot. To compromise, we have artificially reduced
d to 100 Ä, but still our £F is a factor of two
larger than in the experiment. Furthermore, we
limit ourselves to not more than two populated
Landau levels. Wc believe that the reason that
our modcl overestimates the electrostatic energy
is our ncglect of the capacitance to the leads.

To determine the ground state of the quantum
dot in equilibrium with electron reservoirs at
Fermi energy EF, we minimize the thermody-
namic potential

= υ- N E f. , (5)

where N = { d~r p (r) is the number of electrons
in the dot. The number of electrons with quan-
tum numbers n, s is given by

(6)

with N = Σ,,4 NIIS. The number N,„ is constrained
to be an integer for a confined edge channel,
whcreas it is an unconstrained positive real
number for an extended edge channel. The
Landau level degeneracy constrains the particle
density p„,(r) of electrons with quantum numbers
n, s to the intcrval

0 =
eB

(7)

The minimization of Ω subject to the above
constraints is carried out numerically, and yields
a ground state thermodynamic potential ΩΚ, with
the corresponding density distributions per

Landau level. To obtain the activation energy
£.1CI we repeat the minimization twice, subject to
the additional constraint that the total number of
electrons in the localized edge channels is either
one more or one less than the number NQ in the
ground state configuration. This yields two addi-
tional thermodynamic potentials, Ω+ and Ω_.
The activation energy is defined by £.1CI =
min(ß+ -ßg, Ω_ -ßg), and is non-negative by
construction. If E.lc( = 0, either the process
N()—»Wn + l — » N 0 — » . . . or the process NH—>
N(} — l —» N0 —> . . . costs zero energy, that is
to say, an electron can tunnel through the dot via
an intermediate state in the confined edge chan-
nels without cost of energy.

5. Discussion

In fig. 5 we plot the model calculation of £act

äs a function of EF for a quantum dot with the
n = 0 edge channel extended and the n = l edge
channel confined at ß = 3.5T. Triangularly
shaped oscillations are observed in £act that
decrease in magnitude with increasing EF. In
order to test the validity of our calculation, we
compare it with the temperature dependence of
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Fig. 6. Temperature dependence of a maximum and a
minimum in the conductance of dot II, äs a function of
invcrsc temperature for B = 3.5 T and N l r jns = 2.
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Fig 7 (a) Conductance of dot II äs a function of the voltage
on gate B at 380 310 250 and 200 mK (top to bottom)
Measurements are made at B = 3 5 T and Nlr n = 2 (b)
Activation energy calculated from the data m (a)

the conductance oscillations of dot II for B =
3 5 T, Wtrans = 2 and Ndol = 4 The expenmental
results are summanzed m figs 6 and 7 Fig 6
shows the temperature dependence of a conduct-
ance maximum and mimmum obtamed from the
conductance measurements shown m fig 7(a)
The conductance mmima show an activated
temperature dependence while the maxima are
virtually temperature independent In fig 7(b)
we plot the activation energy äs a function of VB

äs calculated from the results of fig 7(a) AI-
though quahtatively the expenment and theory
agree, the peak activation energy m fig 7(b) is
an order of magmtude smaller than that calcu-
lated theoretically (fig 5)

It appears that the model is unable to make a
quantitative prediction of the activation energy
Most hkely, the mam reason for the discrepancy
is our neglect of the dot-lead capacitance of the
tunnel barners relative to the self-capacitance of
the quantum dot Recent expenmental [13] and
theoretical [14] work, however, suggest that this
capacitance can be substantial even for small
barner conductances

In conclusion, we have studied the conduct-
ance of a quantum dot in the presence of 2, l or

0 adiabatically transmitted edge channels We
observe penodic conductance oscillations äs a
function of gate voltage in all three cases, and
demonstrate that the number of electrons added
to the dot per peak is determmed by the ratio of
the total number of LLs in the dot to the number
of LLs confined to the dot Our results demon-
strate that the formation of LLs in a high
magnetic field causes smgle electron chargmg
effects to be of importance for barner conduct-
ances greater than e2/h Usmg a simple model
calculation we have shown that the activation
energy for tunneling via an mtermediate state in
a confined edge channel oscillates penodically äs
a function of EF A more detailed calculation is
needed m order to make quantitative compan-
sons with the expenmentally determmed charg-
mg energy
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