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Coulomb charging of a quantum dot in the presence of
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We present measurements of the conductance of a quantum dot 1n the presence of 2, 1 and 0 adiabatically transmitted
edge channels In all three cases periodic conductance oscillations are observed as a function of gate voltage By using the
oscillations observed n the absence of transmitted edge channels as an clection counter we demonstrate that the
oscillations observed in the presence of transmitted edge channcls are due to the mfluence of Coulomb charging Using a
simple model calculation we show that the activation energy for tunnchng via an intermediate state 1n the confined edge
channel oscillates periodically as a function of the Fermi energy, in qualitative agreement with the experiment

1. Introduction

Using current lithographic techniques it is
possible to fabricate a zero-dimensional conduct-
ing island, or quantum dot, in the two-dimen-
sional electron gas (2DEG) of a gated AlGaAs/
GaAs heterostructure. These dots have gener-
ated a great deal of interest. At low tempera-
tures, the influence of both the confined energy
level spacing and the Coulomb charging energy
can be observed in the dot conductance. A
typical quantum dot device is shown in fig. 1(a).
The dot is connected to two leads by adjustable
quantum point contacts (QPCs), while the den-
sity is varied by the voltage V on an indepen-
dent gate electrode. In a high magnetic field, the
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conductance of the QPCs is approximately given
by [1]

2

e
G~ Nyans + 1) (1)
with N,,, . the number of edge channels that are
fully transmitted over the barrier in the constric-
tion, and =<1 the tunneling transmission prob-
ability of the (N, + 1)th edge channel. The
(N, .o, T 1)th edge channel corresponds to the
lowest index Landau level (LL) that is confined
to the dot. Edge channels corresponding to
higher index LLs are nearly completely reflected.
The states confined to the dot form a discrete
energy spectrum, with average energy spacing
3E. For a non-interacting electron gas, a peak in
the conductance due to resonant tunneling is
observed if an electron state in the dot lines up
with the Fermi level in the leads, E. This results
in periodic conductance oscillations as Vg is
varied and the energy spectrum moves through
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Fig 1 (a) Schematic drawing of the quantum dot deviees
The dimensions ot the rectangle formed by the gates 1s
750 nm X 00 nm for dot I and 700 nm X 900 nm for dot I
(b) (d) Current paths through the dot in the presence of 2 1
or ) adiabatically transmitted cdge channels as adjusted by
Vi, and V,,

=

E, It has recently been demonstrated [2], how-
ever, that tunneling through a quantum dot can
also bec governed by the Coulomb charging
energy for a single tunneling electron This effect
1s dominant 1if the capacitance of the dot C 1s
small so that the charging energy e /2C 1s
substantially larger than 8E Since the charging
cneigy varies pertodically with the electron den-
sity 1n the dot, Coulomb interactions also
produce conductance oscillations periodic in Vj
(Coulomb blockade oscillations)

In a high magnetic field, single electron charg
g cffects are known to be mmportant if the
conductance of the point contacts G, < e’/h In
this casc each edge channel is at least partially
backscattered and all transport through the dot 1s
due to tunnching (fig 1(d)) If G, > e’ /h, onc or

more edge channcls arc adiabatically transmitted
through the dot (1e¢ N, ,,,=2 or 1 as shown in
figs 1(b) and (c)) Since these edge channels are
extended rather than localized 1n the dot one
might think that Coulomb charging 1s sup
pressed Conductance oscillations observed 1n
this regime as a function of magnetic field [3] and
as a function of gate voltage [4] have thus been
attributed to resonant tunneling, (or equivalently
the Aharonov—-Bohm effect [5])

In a recent paper [6], however, we demon-
strated the importance of Coulomb charging 1n
the presence of extended edge channels Here,
we present more extensive data from measure-
ments of two additional quantum dot devices
that confirm this conclusion In both devices, we
observe periodic conductance oscillations as a
function of gate voltage n the presence of 2, 1
and 0 adiabatically transmitted edge channels
Following the method of 1ef [6] we use the
oscillations obseived 1n the full Coulomb block-
ade regime as an electron counter, and show that
Coulomb charging has a strong influence on the
period of the conductance oscillations, even 1n
the presence of extended cdge channels In
addition, we present a theoretical calculation [7]
of the activation energy for charge transfer from
an extended to a localized channel, assuming an
electron—electron ntcraction mediated by a
Thomas—Fermi potential This 1s compared with
the actrvation encrgy determined experimentally
from the temperature dependence of the con-
ductance minima

2. Experiment

The geometry of our two quantum dot devices
(dot I and dot II) 1s shown schematically 1n fig
1(a) [8] Four gates (labelled A-D) define a
rectangle on the surface of an AlGaAs/GaAs
heterostructure with a 2DEG of mobility p =
10°cm’/V's and density n, =3 x 10" em > The
lithographic dimensions of dot I are 750X
800nm’ and those of dot II are 700 x 900 nm®
When the gates are ncgatively biased, a quantum
dot i1s formed 1n the underlying 2DEG, and 1s
connected thiough two QPCs to two-dimensional
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leads. Two-terminal conductance measurements
are made across the dot using an ac lock-in
technique with an excitation voltage below
10 V. In the experiments, the voltage on gate D
is left fixed, and the voltages on gates A and C
are adjusted to control the transmission through
the tunnel barriers in the QPCs. The conduct-
ance is then measured as a function of the
voltage on gate B which determines the electron
density in the dot.

Fig. 2 shows the results of conductance mea-
surements of dot I as a function of V; for a
magnetic field of B=3.50T and a temperature
of 50 mK. The QPCs are adjusted so that there
are N,,.. =2, 1 and 0 edge channels adiabatical-
ly transmitted through the dot for traces (a), (b)
and (c), respectively. This corresponds to the
followmg QPC conductances: (a) 2¢*/h < G, <
36 /h, (b) e /h<G .<2e*/h, and (c) G
e’/h. Each trace shows a series of nearly perlodlc
oscillations in the conductance as a function of
Vi, however the period of the oscillations varies
from trace to trace. There are 53 oscillations in
(a), 80 in (b), and 102 in (c), indicating that the
period in (a) is about twice that in (c), while the
period in (b) is about 1.2 times that in (c).

Fig. 3 compares the conductance oscillations
from measurements made at four different mag-
netic fields (2.75, 3.50, 4.20 and 4.60 T). In each
case the QPCs are adjusted so that 2¢°/h <
G,.<3e’/h, i.e. Ny, =2. Between 2.75 and
4.60T periodic conductance oscillations are ob-
served whose period increases with magnetic
field; the amplitude of the oscillations drops off
rapidly outside of this ﬁeld range. In the N, =
1 case (e*/h < G, .<2e*/h) (not shown) oscilla-
tions are observed for magnetic fields less than
7T and the period of the oscillations again
increases with increasing magnetic field. For the
Niuno =0 case, however, oscillations are ob-
served irrespective of the magnetic field and the
period of the osciliations is field independent.

3. Model

The Coulomb charging energy for the dot ¢*/
2C =¢*/8ed =0.25meV, is greater than kT for

temperatures up to 3 K. Thus the very regular
oscillations observed in the absence of adiabati-
cally transmitted edge channels (the bottom
trace in fig. 2) can safely be attributed to the
Coulomb blockade effect. The gate voltage sepa-
ration between peaks is =e/C,,,, where C,,,
the capacitance between gate B and the dot, is
assumed to be independent of G,. This is
reasonable since G, is much more sensitive to
changes in voltages V, and V. than are the size
of the dot and the dot—gate separation (which
together determine C,,,.). Since each Coulomb
blockade peak corresponds to the removal of
one electron from the dot, this allows us to use
the Coulomb blockade oscillations in a novel
way: as a tool to determine the mechanism that
governs the period of the oscillations seen at
higher barrier transparencies. The number of
electrons per peak for the upper traces in fig. 2
can be determined by dividing the number of
Coulomb blockade peaks counted for N, =0
into the number of peaks for N,,,,,=1 or 2. The
results of this procedure performed on a set of
measurements of the type shown in figs. 2 and 3
are plotted versus magnetic field in fig. 4. The
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Fig 2 Conductance of dot I as a function of the voltage on
gate B for B=35T and T=50mK In the top, mddle, and
bottom traces (a)—(c), QPCs are adjusted to conductances of
25,15 and 0 5¢°/h, respectively The three cases correspond
to the three possible current paths shown m figs 1(b)-(d)



B W Alphenaar et al | Coulomb charging of a quantum dot 83

(8 B=460T
265+
b B=420T
25
= 23+
~.
)
ot ) B=350T
O 25
23
(d B=27T
25+
234
21 T

T T
-08 -07 -06 -05 -04
Vg (V)

Fig 3 Conductance of dot I as a function of the voltage on

gatc B for G, =2 5¢"/h (N, ,.=2) at four different mag-
netic fields (7 = 50 mK)
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Period (# of electrons)

B (T)
Fig 4 Penod of the conductance oscillations (in umts of
electrons per peak) versus magnetic field for G =2 5¢*h
(arcles) and G, =1 5¢’/h (squares) The solid lines arc
theoretical fits for N, . =2, 1 adiabatically transmitted edge

channels (see text)

number of electrons per peak is considerably
larger for N, =2 than for N, =1. In both
cascs, an increase in magnetic field results in an
increase in the number of electrons per peak.

We now consider the periodic conductance

rans

oscillations for Gpc>e2/h (traces (a) and (b) in
fig. 2). The simplest possibility is to ignore
Coulomb charging. As discussed in the intro-
duction, then a peak in the conductance is
observed due to resonant tunneling when an
electron state of the outer most confined LL
lines up with the Fermi energy in the leads. The
frequency at which this occurs corresponds to the
ratc at which electrons are removed from the
outermost confined LL. The total number of
spin—split LLs 1n the dot N, is made up of the
N om LLs of guiding center energy E, below the
barrier height E, and the N,,,, additional LLs
that are occupied in the dot but fully transmitted
over the barriers in the QPCs (E, <E,). Assum-
ing that both the N, and the N, LLs are
depleted at about the same rate, the number of
electrons per peak should be simply N,,. This
argument predicts that the number of electrons
per peak should decrcase, rather than increase
with magnetic field, in contradiction with the
observed results (fig. 4). This discrepancy could
in principle be eliminated if resonant tunneling
through electron states of the confined LLs with
index higher than N, +1 also contributes to
the conductance of the dot. The tunneling rate,
however, decreases exponentially with decreas-
ing E, [9], thus, there should be an order of
magnitude modulation of conductance peak
heights due to resonant tunneling through states
belonging to consecutive LLs confined in the dot
[10]. This is not observed in our experiment,
however [11].

We can model the results of fig. 4, though, if
we take Coulomb charging into account for
G,.> e’/h. We extend recent arguments for the
N, ... = 0 case [12] to our problem by considering
a separate Coulomb charging energy of the N
LLs existing in the presence of the adiabatically
transmitted edge channels. This is reasonable,
since a magnetically induced tunnel barrier con-
sisting of an incompressible electron gas region
exists between each of the edge channels. Reson-
ant tunneling electrons thus face a non-zero
Coulomb charging energy associated with a
change in the electron population of the confined
LLs. This leads to Coulomb blockade oscillations
as a function of gate voltage with a period
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corresponding to the removal of an electron
from any one of the N, . LLs. The removal of
electrons from one of the N, LLs in the dot
does not give rise to a conductance peak because
charge in these levels is not localized and can
therefore be changed continuously. This implies

that

electrons  Neons + Nians  Naot )
peak = N, " Negnt )

conl conf

Fig. 4 shows solutions of eq. (2) for N, =1
and N, ,..=2. We determine N, by measuring
the conductance of the dot with the two QPCs
completely open (V, =V, =0). The agreement
between our model and the experimental results
is very good. In both cases, the number of
electrons per peak is seen to increase as Ny,
decreases from 5 to 3. This comparison dem-
onstrates then that Coulomb charging effects

dominate even though G, >e*/h.

4. Activation energy calculation

In this section we present a simple model
calculation of the activation energy for single
electron tunneling in the presence of adiabatical-
ly transmitted edge channels [7]. We begin by
considering a dot containing two edge channels,
one confined and one extended (inset (a) of fig.
5). We seek the activation energy for an electron
tunneling from the leads into the confined edge
channel (indicated by the arrow in the inset (a)
of fig. 5) as a function of the Fermi energy in the
leads. Since the extended edge channel is con-
nected directly to the leads, adding an electron
to the confined edge channel results in the
appearance of a positive image charge on the
extended edge channel. The change in the
charge distribution of the dot is thus equivalent
to a single electron tunneling from the extended
edge channel into the confined edge channel, as
shown in inset (b). What is neglected here is a
possible contribution from image charges in the
leads. In other words, we consider only the
self-capacitance of the dot, and neglect the

2
(a) (b}
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Fig 5 Activation energy as a function of Fermi energy for a
quantum dot with two edge channels occupied, one extended
and one localized The inset 1s discussed 1n the text

capacitance to the leads, which originates at the
tunnel barriers.

For the total electrostatic energy of the dot we
use the self-consistent Thomas—Fermi model
proposed by McEuen et al. [12],

U= @+ 1)+ gunBIN,, + | CrV ()

cy[@r [@rvie—rmpmee). @)

The index n=0, 1, 2,... labels the Landau
levels, the index s = %1 labels the spins polariza-
tion. The sum over n and s gives the kinetic and
Zeeman energy of the N, electrons in each
Landau level (w,=eB/m is the cyclotron fre-
quency and gugB the Zeeman splitting). The
integrals over the areal electron density p(r) give
the confinement and interaction energy in the
approximation of a slowly varying electron den-
sity. We take a parabolic confining potential
V. (r)=Limwir’. As in ref. [12], the electron—
electron interaction potential is modeled by

2
62 e

e(r2+62)1/2 - E(r2+4d2)”2 >

Vee(r) = (4)

to mclude the effects of the finite thickness § of
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the 2DEG layer and the image charge on a gate
clectrode at a distance d above the 2DEG. In
our numecrical work we took fiw, =0.9 meV, & =
50 A, d =100 A and dielectric constant € = 13.6.

Our qualitative conclusions arc not scnsitive to
the specific value of the parameters used in our
numerical work. However we had difficulty
doing a quantitative comparison with the experi-
ment. In the experiment the distance between
the gate electrode and the 2DEG is around
1000 A. We found that using d = 1000 A in our
model calculation requires a much too large
Fermi cnergy in the reservoirs, in order to
populate the two lowest Landau levels in the
dot. To compromise, we have artificially reduced
d to 100 A, but still our E, is a factor of two
larger than in the experiment. Furthermore, we
limit ourselves to not more than two populated
Landau levels. We believe that the reason that
our model overestimates the electrostatic energy
is our ncglect of the capacitance to the leads.

To determine the ground state of the quantum
dot in equilibrium with electron reservoirs at
Fermi energy E., we minimize the thermody-
namic potential

Q=U-NE,, (5)

where N = [ d°r p(r) is the number of electrons
in the dot. The number of electrons with quan-
tum numbers #, s is given by

N, = @ o0, (©)

with N=1X N, . The number N,, is constrained
to be an integer for a confined edge channel,
whereas it is an unconstrained positive real
number for an extended edge channel. The
Landau level degeneracy constrains the particle
density p, (r) of electrons with quantum numbers

n, s to the interval

eB
0<p, ()= ()

The minimization of (2 subject to the above
constraints is carried out numerically, and yiclds
a ground state thermodynamic potential £2,, with
the corresponding density distributions per

Landau level. To obtain the activation energy
E_. we repeat the minimization twice, subject to
the additional constraint that the total number of
electrons in the localized edge channels is cither
onc more or one less than the number N, in the
ground state configuration. This yields two addi-
tional thermodynamic potentials, 2, and (2_.
The activation energy is defined by E, =
min(2, — Q,, _—(,), and is non-negative by
construction. If E, =0, either the process
N,— N, +1—N,— ... or the process N,—
N,—1—N,— ... costs zero energy, that is
to say, an electron can tunnel through the dot via
an intermediate state in the confined edge chan-
nels without cost of energy.

5. Discussion

In fig. 5 we plot the model calculation of £,
as a function of Ep for a quantum dot with the
n =0 edge channel extended and the n =1 edge
channel confined at B=3.5T. Triangularly
shaped oscillations are observed in E,. that
decrease in magnitude with increasing Eg. In
order to test the validity of our calculation, we
compare it with the temperature dependence of

(¢}
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g
5 b .
1 ® @
z P
—_ 4
e
(@] ] | ]
- u
Minimum =
-1
3*10 T T T T T T

0 2 4 6 8 1 122
YT K1)

Fig. 6. Temperature dependence of a maximum and a
minimum in the conductance of dot II, as a function of
inverse temperature for B=3.5T and N, ,,. =2.

trans



86 B W Alphenaar et al | Coulomb charging of a quantum dot

G (e?/h)

10
b
3
2 5
g

i /\/\

0 y

-095 -090 -085

Vg (V)

Fig 7 (a) Conductance of dot II as a function of the voltage
on gate B at 380 310 250 and 200 mK (top to bottom)
Measurements are made at B=35T and N, , =2 (b)
Activation energy calculated from the data in (a)

the conductance oscillations of dot II for B =
35T, N,,,.,=2 and Ny, =4 The experimental
results are summarized m figs 6 and 7 Fig 6
shows the temperature dependence of a conduct-
ance maximum and muumum obtained from the
conductance measurements shown in fig 7(a)
The conductance munima show an activated
temperature dependence while the maxima are
virtually temperature mdependent In fig 7(b)
we plot the activation energy as a function of Vj
as calculated from the results of fig 7(a) Al-
though qualtatively the expermment and theory
agree, the peak activation energy m fig 7(b) 1s
an order of magnitude smaller than that calcu-
lated theoretically (fig 5)

It appears that the model 1s unable to make a
quantitative prediction of the activation energy
Most likely, the main reason for the discrepancy
1s our neglect of the dot-lead capacitance of the
tunnel barriers relative to the self-capacitance of
the quantum dot Recent experimental [13] and
theoretical [14] work, however, suggest that this
capacitance can be substantial even for small
barrier conductances

In conclusion, we have studied the conduct-
ance of a quantum dot 1 the presence of 2, 1 or

0 adiabatically transmitted edge channels We
observe periodic conductance oscillations as a
function of gate voltage n all three cases, and
demonstrate that the number of electrons added
to the dot per peak 1s determined by the ratio of
the total number of LLs n the dot to the number
of LLs confined to the dot Our results demon-
strate that the formation of LLs m a high
magnetic field causes single electron charging
effects to be of importance for barrier conduct-
ances greater than e’/h Using a simple model
calculation we have shown that the activation
energy for tunneling via an mtermediate state in
a confined edge channel oscillates periodically as
a function of Ex A more detailed calculation 1s
needed n order to make quantitative compart-
sons with the experimentally determined charg-
g energy
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