3,498 research outputs found

    Preclinical Models for Skeletal Research: How Commonly Used Species Mimic (or Don’t) Aspects of Human Bone

    Get PDF
    Preclinical studies play an indispensable role in exploring the biological regulation of the musculoskeletal system. They are required in all drug development pipelines where both small and large animal models are needed to understand efficacy and side effects. This brief review highlights 4 aspects of human bone, longitudinal bone growth, intracortical remodeling, collagen/mineral interface, and age-related changes, and discusses how various animal models recapitulate (or don’t) these aspects of human skeletal physiology

    Surface-specific bone formation effects of osteoporosis pharmacological treatments

    Get PDF
    Current anti-osteoporotic pharmacological treatments reduce fracture risk in part by altering bone remodeling/modeling. These effects can manifest on any or all of the bone envelopes—periosteal, intracortical, and trabecular/endocortical—each of which has unique effects on the biomechanical properties of bone. The purpose of this review is to provide an overview of how the most common FDA-approved anti-osteoporosis agents [bisphosphonates, estrogen/hormone replacement therapy, selective estrogen receptor modulators (SERMs), and parathyroid hormone (PTH)] affect tissue-level remodeling/modeling on each of the bone surfaces. Iliac crest biopsy data, the only means of assessing surface-specific bone formation in humans, exist for all of these agents although they predominately focus on trabecular/endocortical surfaces. Data from pre-clinical animal models provide an essential complement to human studies, particuarily for changes on periosteal surfaces and within the intracortical envelope. Although all of the anti-catabolic agents (estrogen replacement therapy, SERMs, bisphosphonates) exert positive effects on the various bone surfaces, the bisphosphonates produce the unique biomechanical combination of allowing normal periosteal expansion while limiting remodeling-induced bone loss on intracortical and trabecular/endocortical surfaces. PTH, the only FDA-approved anabolic agent, exerts biomechanically favorable alterations though enhanced trabecular/endocortical surface activity while also stimulating periosteal expansion. Through understanding how current and future anti-osteoporotic agents influence surface-specific bone activity we will move one step closer to developing agents that could potentially target a particular bone surface

    Recent Advances in Understanding Bisphosphonate Effects on Bone Mechanical Properties

    Get PDF
    Purpose of the Review Bisphosphonates have well-established effects on suppressing bone resorption and slowing bone loss, yet the effects on bone mechanical properties are less clear. We review recent data from pre-clinical and clinical experiments that assessed mechanical properties of bisphosphonate-treated specimens. Recent Findings Pre-clinical work has utilized new techniques to show reduced fatigue life and transfer of stress from the mineral to collagen. Several notable studies have examined mechanical properties of tissue from patients treated with bisphosphonates with mixed results. Pre-clinical data suggest effects on mechanics may be independent of remodeling suppression. Summary The direct effect of bisphosphonates on bone mechanics remains unclear but recent work has set a solid foundation for the coming years

    Peri-urban wild dogs : diet and movements in north-eastern Australia

    Get PDF
    Knowledge of peri-urban dingo or wild dog ecology can assist management agencies in developing management approaches that alleviate human-wildlife conflicts. Here we summarise (1) the food and dietary items identified in wild dog scats and (2) wild dog movement ecology in urban areas. Individual prey species commonly observed in scats included agile wallabies, northern brown bandicoots and swamp wallabies. Dietary overlap analyses indicated that wild dogs ate the same types or sizes of prey in different regions. In general, wild dogs occupied small fragments of bushland within an urban matrix, were active at all times of the day, and lived within a few hundred meters of houses and humans at all times. These data suggest that urban wild dog management strategies should focus on the mitigation of impacts at the individual or group level, and not population-level reductions in numbers

    Mandibular necrosis in beagle dogs treated with bisphosphonates

    Get PDF
    Objectives –  To test the effect of bisphosphonate (BP) treatment for up to 3 years on bone necrosis and osteocyte death in the mandible using a canine model. Materials and Methods –  Dogs were treated with clinical doses of oral alendronate (ALN, 0.2 or 1.0 mg/kg/day) for 1 or 3 years. In a separate study, dogs were treated with i.v. zoledronate (ZOL) at 0.06 mg/kg/day for 6 months. En bloc staining was used to identify necrotic areas in the mandible; viable osteocytes were identified using lactate dehydrogenase. Results –  None of the treatments was associated with exposed bone, but 17–25% of dogs treated for 1 year and 25–33% of dogs treated for 3 years with ALN showed pockets of dead bone. Necrotic areas had no viable osteocytes and were void of patent canaliculi. No control animals demonstrated necrotic bone. ZOL treatment for 6 months was associated with osteocyte death greater than that seen in animals treated with ALN or saline. It is not clear whether osteocyte death occurs because of direct toxic effects of BPs, or because suppressed remodelling fails to renew areas that naturally undergo cell death. Necrotic areas are also associated with bone other than the mandible, e.g. the rib, which normally undergo high rates of remodelling. Conclusions –  Reduced remodelling rate using BPs may contribute to the pathogenesis of bone matrix necrosis. The development of an animal model that mimics important aspects of BP-related osteonecrosis of the jaw is important to understanding the pathogenesis of osteonecrosis

    The pathogenesis of bisphosphonate-related osteonecrosis of the jaw: so many hypotheses, so few data.

    Get PDF
    Bisphosphonate-related osteonecrosis of the jaw (BRONJ) has generated great interest in the medical and research communities yet remains an enigma, given its unknown pathogenesis. The goal of this review is to summarize the various proposed hypotheses underlying BRONJ. Although a role of the oral mucosa has been proposed, the bone is likely the primary tissue of interest for BRONJ. The most popular BRONJ hypothesis-manifestation of necrotic bone resulting from bisphosphonate--induced remodeling suppression--is supported mostly by indirect evidence, although recent data have shown that bisphosphonates significantly reduce remodeling in the jaw. Remodeling suppression would be expected, and has been shown, to allow accumulation of nonviable osteocytes, whereas a more direct cytotoxic effect of bisphosphonates on osteocytes has also been proposed. Bisphosphonates have antiangiogenic effects, leading to speculation that this could contribute to the BRONJ pathogenesis. Compromised angiogenesis would most likely be involved in post-intervention healing, although other aspects of the vasculature (eg, blood flow) could contribute to BRONJ. Despite infection being present in many BRONJ patients, there is no clear evidence as to whether infection is a primary or secondary event in the pathophysiology. In addition to these main factors proposed in the pathogenesis, numerous cofactors associated with BRONJ (eg, diabetes, smoking, dental extraction, concurrent medications) could interact with bisphosphonates and affect remodeling, angiogenesis/blood flow, and/or infection. Because our lack of knowledge concerning BRONJ pathogenesis results from a lack of data, it is only through the initiation of hypothesis-driven studies that significant progress will be made to understand this serious and debilitating condition

    Bisphosphonate effects on bone turnover, microdamage, and mechanical properties: what we think we know and what we know that we don't know

    Get PDF
    The bisphosphonates (BPs) have been useful tools in our understanding of the role that bone remodeling plays in skeletal health. The purpose of this paper is to outline what we know, and what is still unknown, about the role that BPs play in modulating bone turnover, how this affects microdamage accumulation, and ultimately what the effects of these changes elicited by BPs are to the structural and the material biomechanical properties of the skeleton. We know that BPs suppress remodeling site-specifically, probably do not have a direct effect on formation, and that the individual BPs vary with respect to speed of onset, duration of effect and magnitude of suppression. However, we do not know if these differences are meaningful in a clinical sense, how much remodeling is sufficient, the optimal duration of treatment, or how long it takes to restore remodeling to pre-treatment levels following withdrawal. We also know that suppression is intimately tied to microdamage accumulation, which is also site-specific, that BPs impair targeted repair of damage, and that they can reduce the energy absorption capacity of bone at the tissue level. However, the BPs are clearly effective at preventing fracture, and generally increase bone mineral density and whole bone strength, so we do not know whether these changes in damage accumulation and repair, or the mechanical effects at the tissue level, are clinically meaningful. The mechanical effects of BPs on the fatigue life of bone, or BP effects on bone subject to an impact, are entirely unknown. This paper reviews the literature on these topics, and identifies gaps in knowledge that can be addressed with further research

    Skeletal Microdamage: Less About Biomechanics and More About Remodeling

    Get PDF
    The mechanical consequences of skeletal microdamage have been clearly documented using various experimental methods, yet recent experiments suggest that physiological levels of microdamage accumulation are not sufficient to compromise the bones’ biomechanical properties. While great advances have been made in our understanding of the biomechanical implications of microdamage, less is known concerning the physiological role of microdamage in bone remodeling. Microdamage has been shown to act as a signal for bone remodeling, likely through a disruption of the osteocyte-canalicular network. Interestingly, age-related increases in microdamage are not accompanied by increases in bone remodeling suggesting that the physiological mechanisms which link microdamage and remodeling are compromised with aging

    Changes in vertebral strength-density and energy absorption-density relationships following bisphosphonate treatment in beagle dogs

    Get PDF
    We aimed to determine the effects of bisphosphonates on mechanical properties independent of changes in bone density. Our results show that at equivalent bone densities, vertebrae from beagles treated with bisphosphonate have equivalent bone strength and reduced bone energy absorption compared to those from untreated animals. INTRODUCTION: Assessing the relationship between mechanical properties and bone density allows a biomechanical evaluation of bone quality, with differences at a given density indicative of altered quality. The purpose of this study was to evaluate the strength-density and energy absorption-density relationships in vertebral bone following a one-year treatment with clinical doses of two different bisphosphonates in beagle dogs. METHODS: Areal bone mineral density (aBMD) and compressive mechanical properties (ultimate load and energy absorption) were assessed on lumbar vertebrae from skeletally mature beagle dogs treated with vehicle (VEH), alendronate (ALN), or risedronate (RIS). Relationships among properties were assessed using analyses of covariance. RESULTS: Neither treatment altered the strength-density relationship compared to VEH, suggesting increases in vertebral strength with bisphosphonate-treatment are explained by increased density. The energy absorption-density relationship was altered by ALN, resulting in significantly lower energy absorption capacity at a given aBMD compared to both VEH (-22%) and RIS (-14%). CONCLUSIONS: These data document that after adjusting for increased aBMD, vertebrae from animals treated with bisphosphonates have similar strength as those from untreated animals. Conversely, when adjusted for increased aBMD, alendronate treatment, but not risedronate treatment, significantly reduces the energy required for vertebral fracture, indicative of an alteration in bone quality.The authors thank Dr. Tony Keaveny for insightful discussion regarding the topics addressed in this paper. This work was supported by NIH Grants AR047838 and AR007581 and a research grant from The Alliance for Better Bone Health (Procter & Gamble Pharmaceuticals and sanofi-aventis). Merck and Co. kindly provided the alendronate. This investigation utilized an animal facility constructed with support from Research Facilities Improvement Program Grant Number C06 RR10601-01 from the National Center for Research Resources, National Institutes of Health

    Short-courses of dexamethasone abolish bisphosphonate-induced reductions in bone toughness.

    Get PDF
    Bone Biology Laboratory http://www.iupui.edu/~bonelab/ Department of Anatomy and Cell Biology Indiana University School of MedicineAtypical femoral fractures, which display characteristics of brittle material failure, have been associated with potent remodeling suppression drugs. Given the millions of individuals treated with this class of drugs it is likely that other factors play a role in these fractures. Some evidence suggests concomitant use of corticosteroids may contribute to the pathogenesis although data in this area is lacking. The goal of this study was to assess the combined role of bisphosphonates and examethasone on bone mechanical properties. Skeletally mature beagle dogs were either untreated controls, or treated with zoledronic acid (ZOL), dexamethasone (DEX), or ZOL + DEX. Zoledronic acid (0.06 mg/kg) was given monthly via IV infusion for 9 months. DEX (5 mg) was administered daily for one week during each of the last three months of the 9 month experiment. Ribs were harvested and assessed for bone geometry, mechanical properties, and remodeling rate (n=3-6 specimens per group). DEX significantly suppressed intracortical remodeling compared to vehicle controls while both ZOL and the combination of DEX+ZOL nearly abolished intracortical remodeling. ZOL treatment resulted in significantly lower bone toughness, determined from 3-point bending tests, compared to all other treatment groups while the toughness in ZOL+DEX animals was identical to those of untreated controls. These findings suggest not only that short-courses of dexamethasone do not adversely affect toughness in the setting of bisphosphonates, they actually reverse the adverse effects of its treatment. Understanding the mechanism for this tissue-level effect could lead to novels approaches for reducing the risk of atypical femoral fractures.We would like to thank Carrie Pell and her staff for assistance with animal care, Keith Condon for his assistance with histological processing. This work was supported by a grant from the NIH (DE019686 – MRA)
    • …
    corecore