1	
2	
3	
4	Surface-specific bone formation effects of osteoporosis pharmacological treatments
5	
6	Matthew R. Allen
7 8 9 10 11	Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202
12 13 14	Disclosures: Dr. Allen has research contracts with Eli Lilly, The Alliance for Better Bone Health, and Amgen. He also serves as a consultant for Merck and Co.
15	
16	
17	
18	
19	Corresponding Author:
20	Matthew R. Allen
21	Dept of Anatomy & Cell Biology
22	635 Barnhill Drive, MS-5035
23	Indianapolis, IN 46202
24	Tel: (317) 274-1283
25	FAX: (317) 278-2040
26	Email: matallen@iupui.edu
	This is the author's manuscript of the article published in final edited form as: Alle

This is the author's manuscript of the article published in final edited form as: Allen M. R. (2008). Surface-specific bone formation effects of osteoporosis pharmacological treatments, Clinical Reviews in Bone and Mineral Metabolism, 6(1-2): 62-9. Available from: http://dx.doi.org/10.1007/s12018-008-9022-6

27 Abstract

28 Current anti-osteoporotic pharmacological treatments reduce fracture risk in part by 29 altering bone remodeling/modeling. These effects can manifest on any or all of the bone 30 envelopes – periosetal, intracortical, and trabecular/endocortical – each of which has 31 unique effects on the biomechanical properties of bone. The purpose of this review is to 32 provide an overview of how the most common FDA-approved anti-osteoporosis agents 33 (bisphosphonates, estrogen/hormone replacement therapy, selective estrogen receptor modulators (SERMs), and parathyroid hormone (PTH)) affect tissue-level 34 35 remodeling/modeling on each of the bone surfaces. Iliac crest biopsy data, the only 36 means of assessing surface-specific bone formation in humans, exist for all of these 37 agents although they predominately focus on trabecular/endocortical surfaces. Data from 38 pre-clinical animal models provide an essential complement to human studies. 39 particuarily for changes on periosteal surfaces and within the intracortical envelope. 40 Although all of the anti-catabolic agents (estrogen replacement therapy, SERMs, 41 bisphosphonates) exert positive effects on the various bone surfaces, the bisphosphonates 42 produce the unique biomechanical combination of allowing normal periosteal expansion 43 while limiting remodeling-induced bone loss on intracortical and trabecular/endocortical 44 surfaces. PTH, the only FDA-approved anabolic agent, exerts biomechanically favorable 45 alterations though enhanced trabecular/endocortical surface activity while also 46 stimulating periosetal expansion. Through understanding how current and future anti-47 osteoporotic agents influence surface-specific bone activity we will move one step closer

48 to developing agents that could potentially target a particular bone surface.

- 49 Key words: bisphosphonates, estrogen/hormone replacement therapy, selective estrogen
- 50 receptor modulators (SERMs), parathyroid hormone

52 Introduction

53	Current osteoporosis pharmacoloical treatments are highly effective in reducing fracture
54	risk [1-3]. The mechanisms underlying fracture risk reduction with the various
55	treatments is not completely understood but is due in large part to the effect these agents
56	have on bone remodeling/modeling. Bone remodeling, the coupled process of bone
57	resorption and formation, serves to renew bone tissue and occurs on trabecular and
58	endocortical bone surfaces and within the cortex (intracortical remodeling) (Fig. 1).
59	Bone modeling, an uncoupled process in which formation or resorption occur
60	independent of the other, occurs on trabecular, endocortical, and periosteal surfaces.
61	
62	Anti-osteoporotic agents can be classified as anti-catabolic or anabolic [4]. Anti-catablic
63	agents, including bisphosphonates, estrogen/hormone replacement therapy (HRT),
64	selective estrogen receptor modulators (SERMs), and calcitonin work primarily by
65	suppressing bone remodeling. Remodeling suppression slows bone loss, preserving bone
66	architecture and geometry. The only anabolic agent currently approved for treating
67	osteoporosis, parathyroid hormone (PTH), stimulates both modeling and remodeling
68	which preserves, and in some cases enhances, bone architecture and geometry. While the
69	modeling/remodeling effect of each anti-catabolic and anabolic agent is important, the
70	surface(s) on which the effects occur are perhaps more important for bone biomechanics
71	and fracture risk reduction.
72	

73 The purpose of this review is toprovide an overview of how the FDA-approved anti-

74 osteoporosis agents affect tissue-level remodeling/modeling on eavh of the bone

75 envelopes - periosteal, intracortical, and endocortical/trabecular - and how this is likely to 76 influence bone biomechanics. As a limited amount of human data exist (from bone 77 biopsy analyses), the majority of information comes from pre-clinical animal studies. 78 This results in a certain degree of ambiguity with respect to determining how each agent 79 affects the various surfaces as differences among studies, such as species, treatment (dose 80 and duration), and whether or not the animals are intact or ovariectomized, all influence 81 remodeling/modeling effects. Therefore, for each of the bone surfaces, the effects of the 82 various treatments will be summarized for humans, intact animals, and ovariectomized 83 animals, the latter two catagories focusing mostly on large animal models.

84

85 **Periosteal surface**

86 Periosteal bone surfaces primarily undergo modeling which is most prominent during 87 growth and development yet continues at a slower rate in adults [5]. Remodeling does 88 occur on periosteal surfaces [6-8] but is generally considered to constitute a small 89 percentage of overall activity on this surface. The addition of bone to the periosteal 90 surface exponentially enhances bone biomechanical properties by increasing the cross-91 sectional moment of inertia [7, 9]. This is true both for bones made exclusively of 92 cortical bone (e.g. long bone diaphysis) and for those with significant amounts of 93 trabecular bone (e.g. vertebra and femoral neck) [10]. The clinical implications of 94 periosteal expansion are significant as only a small amount of bone needs to be added to 95 this surface to enhance the biomechanical properties [7, 11]. Periosteal expansion can 96 also offset the negative biomechanical effects associated with bone loss from other bone 97 envelopes as only 30% of bone mass lost from the endocortical surface needs to be added

98 to the periosteal surface to achieve equivalent biomechanical properties [11]. Despite 99 the substantial biomechanical benefit of periosteal apposition, very little clinical data 100 exists concerning the effects of anti-osteoporosis pharmaceutical agents on this surface.

101

102 Loss of estrogen increases periosteal expansion while estrogen supplementation 103 suppresses expansion [12-15]. Ample histological data exist concerning the effects of 104 hormone/estrogen replacement therapy (HRT) in humans yet they do not routinely 105 include analyses of the periosteal surface. The available data, published only in abstract 106 form, suggest reduced periosteal formation with HRT [16]. There is no data on the 107 effects of selective estrogen receptor modulators (SERMs) on periosteal bone formation. 108 Raloxifene, one of the most commonly studied SERMs, had no effect on femoral 109 periosteal bone formation in ovariectomized cynomolgus monkeys suggesting it does not 110 inhibit periosteal expansion in estrogen-deplete situations [15]. Conversely, in an intact 111 beagle dog model where endogenous estrogen levels are normal, raloxifene significantly 112 enhanced periosteal bone formation rate compared to controls [17].

113

Bisphosphonates exert their skeletal effect through suppression of remodeling and therefore would be expected to have minimal direct effect on periosteal surfaces. Clinical data describing bone formation activity on periosteal surfaces, published only in abstract form, suggest no effect of alendronate on the periosteal surface of iliac crest biopsies [16, 18]. Pre-clinical studies with intact beagles [17, 19-21], ovariectomized beagles [22], and intact minipigs [23] have consistently shown no significant effect of bisphosphonates on periosteal bone formation. Significant suppression of periosteal bone formation has been shown in several rodent studies [24-26] although the absence of similar data in larger pre-clinical models or humans suggest this may a species-specific effect.

123

124 As an anabolic agent, intermittent PTH (teriparatide, synthetic PTH [hPTH(1-34)], 125 recombinant human teriparatide [rhPTH(1-34)], or PTH(1-84)), would be expected to 126 have the greatest effect of all the approved osteoporosis agents on periosteal bone [3, 27]. 127 While iliac crest biopsy samples from PTH-treated patients consistently show increased 128 cortical thickness compared to placebo-treated patients [28-31], periosteal surface bone 129 formation results have been conflicting. Following 1 month of treatment, periosteal bone 130 formation rate was significantly higher than controls [32] showed no significant 131 difference between PTH- and placebo-treated patients [28, 33]. Intact rabbits, the only 132 large animal model in which periosteal bone responses to PTH have been examined, have 133 shown significantly higher periosteal bone formation with PTH treatment compared to 134 vehicle [34-36].

135

136 Summary- Periosteal surfaces (Table 1)

Periosteal expansion has a significant effect on fracture risk yet there are minimal data describing how anti-osteoporosis agents influence activity on this surface. Beginning at menopause, the loss of endogenous estrogen simulates periosteal expansion. Estrogen/hormone replacement therapy suppresses this periosteal expansion while bisphosphonates have no effect. The human data concerning SERMs and PTH on periosteal bone are insufficient to draw conclusions concerning their effects although some clinical and the majority of pre-clinical data suggest an anabolic effect (or at worstno effect) with PTH.

145

146 Intracortical envelope

147 The bone cortex of humans and many large animal research models (non-human 148 primates, dogs, pigs, rabbits) routinely undergoes intracortical (osteonal) [37, 38]. 149 Similar to trabecular bone remodeling, the loss of estrogen at menopause is associated 150 with an imbalance in the amount of bone formation relative to resorption within 151 intracortical remodeling units. This negative bone balance, coupled with the increases in 152 intracortical remodeling, result in high levels of cortical porosity in postmenopausal 153 women. Intracortical porosity is inversely related to mechanical properties [39, 40] yet 154 its effect is highly dependent on the spatial location of the pores. In bending or torsion, 155 cortical porosity near the outer periosteal surface has a greater negative effect on 156 biomechanics as compared to if the voids are near the endocortical surface [34, 39]. As 157 with the periosteal surface, few clinical data exist concerning the effects of 158 pharmaceutical agents on intracortical remodeling emphasizing the importance of pre-159 clinical models. In the case of intracortical remodeling, pre-clinical models are limited 160 exclusively to large animal models as under normal physiological conditions rodents lack 161 intracortical remodeling.

162

163 Reductions in circulating estrogen increase cortical porosity through stimulation of

164 intracortical remodeling [15, 22, 41]. In response to drug-induced or naturally occurring

165 reductions in circulating estrogen, HRT inhibited increased intracortical remodeling and

166 cortical porosity [41, 42]. Similar results have been noted in non-human primates
167 wherein intracortical remodeling increased with estrogen withdrawal leading to increases
168 in cortical porosity [15]. These increases in remodeling and porosity were reduced in
169 animals treated with either estrogen or raloxifene [15]. Treatment of intact beagles with
170 raloxifene had no effect on intracortical remodeling [17].

171

172 Bisphosphonates, due to their suppression of remodeling, would be expected to suppress 173 intracortical remodeling. Human data are limited and conflicting. Following 1 to 3 years 174 of risedronate treatment, iliac crest cortical porosity was not different compared to 175 baseline levels or age-matched placebo controls [43, 44]. Conversely, biopsies from 176 women treated for 2-3 years with alendronate had significantly lower cortical porosity in 177 the iliac crest compared to placebo-treated patients [45]. Pre-clinical models consistently 178 document reductions in intracortical remodeling with bisphosphonates. In 179 ovariectomized non-human primates clodronate suppressed tibia intracortical bone 180 formation to control levels [46] while ibandronate reduced intracortical remodeling in the 181 rib and central radius, but not the femoral neck, compared to controls [47]. Suppression 182 of intracortical turnover with bisphosphonates has also been shown in 183 ovariohysterectomized beagles [22], intact beagles [19, 21, 48], and intact minipigs [23]. 184 185 Of the approved osteoporosis treatments, PTH has the most distinct effect on intracortical 186 remodeling. Using intact female rabbits, PTH has been shown to produce a rapid 187 increase (within the first remodeling cycle) of intracortical bone remodeling [36] which is 188 sustained with continued treatment [35, 36]. This stimulation of remodeling leads to a

189 significant increase in cortical porosity [35, 36]. While an increase in porosity would be 190 predicted to reduce biomechanical properties, the preferential location of intracortical 191 remodeling and porosity near the endocortical surface with PTH minimized any negative 192 biomechanical effects. For example, the increased porosity near the endocortical surface 193 with PTH compromised the cross-sectional moment of inertial (CSMI; an index of 194 biomechanical strength) by less than 2%; if this same amount of porosity were located 195 near the periosteal surface the CSMI would be reduced by almost 10% [35]. Similar 196 results have been documented in ovariectomized non-human primates where intracortical 197 turnover rate was significantly increased in the femur [49], humerus [50], and femoral 198 neck [49] following PTH treatment. The increased porosity with PTH in these non-199 human primate studies was most notable near the endocortical surface [50], as with the 200 rabbits, and therefore resulted in only minimal consequences to the biomechanical 201 properties of these bones [50]. Increases in cortical porosity with PTH have also been 202 shown in an intact dog model suggesting that similar changes within the cortex occur 203 with PTH treatment when estrogen levels are normal [51]. Human data concerning 204 changes with PTH are limited, yet the porosity data are not consistent with pre-clinical studies. Paired iliac crest biopsies from PTH-treated patients showed a trend toward 205 206 increased porosity [30] although there was clearly no effect in two other studies of PTH-207 treatment [28, 29]; these clinical studies did not assess intracortical remodeling. 208

209 Summary- Intracortical envelope (Table 1)

210 Intracortical remodeling increases during menopause, leading to higher levels of cortical

211 porosity which reduces biomechanical properties. Anti-catabolic osteoporosis agents,

212 HRT, SERMs, and bisphosphonates, appear to suppress intracortical remodeling and 213 therefore reduce cortical porosity. Several large animal models show PTH stimulates 214 intracortical remodeling and increases cortical porosity, the biomechanical consequences 215 of which are minimized through preferential location of such activity near the 216 endocortical surface. Based on these data, the anti-catabolic agents provide the most 217 favorable effect on intracortical bone as they reduce cortical porosity in postmenopausal 218 women. However anabolic agents are also attractive for this bone envelope as enhanced 219 remodeling would serve to renew bone tissue and occur spatially such that it has minimal 220 consequences to biomechanics.

221

222 Trabecular/Endocortical surfaces

223 At menopause, bone remodeling increases on trabecular and endocortical surfaces [52-224 54] resulting in a significant loss of bone volume and trabecular architecture [44, 55]. 225 Bone formation activity on the trabecular surface is the most studied of the bone 226 envelopes however it is the most complex surface to assess how remodeling/modeling 227 influences biomechanics due to the intimate relationship between trabecular and cortical 228 bone. There is a clear biomechanical benefit of increasing trabecular bone volume with 229 the enhancement of trabecular number having a greater benefit compared to increasing 230 trabecular thickness [56]. Equally important to biomechanics is having a well-connected 231 trabecular network. Therefore, changes in both bone volume and architecture likely 232 determine the ultimate biomechanical effect of anti-osteoporosis treatments on trabecular 233 bone.

235	The effect of HRT on trabecular surface activity is conflicting. HRT has been shown to
236	significantly suppress trabecular bone remodeling in the majority of human studies [54,
237	57-60] although other studies have shown no effect [61-64]. Similar discrepancies exist
238	for the effects of HRT on bone volume and architecture with one study showing
239	beneficial effects [62] and others showing no effect [58, 60, 63, 64]. Data from humans
240	treated with SERMs have provided more consistent results compared to HRT, having
241	shown significant [54, 65] and non-significant [58] reductions in trabecular bone
242	remodeling with raloxifene compared to controls. Ovariectomized non-human primates
243	had significantly lower trabecular and endocortical bone formation rates at the iliac crest,
244	vertebra, and tibia when treated with either estrogen or raloxifene [15, 66]. Intact beagle
245	dogs have non-significantly lower trabecular bone remodeling with raloxifene [67].
246	
247	Studies examining the effect of bisphosphonates on trabecular bone remodeling and bone
248	volume consistently show significant suppression of bone remodeling on both trabecular
249	and endocortical surfaces [43, 68-71]. These reductions in remodeling with
250	bisphosphonate treatment are associated with prevention of the normal loss of bone
251	volume and architecture in placebo-treated patients [43, 44, 55, 71, 72]. Pre-clinical
252	models similarly show that bisphosphonates suppress remodeling and increase bone
253	volume in ovariectomized non-human primates [46, 47, 73], ovariectomized beagles [22,
254	74], intact minipigs [23], and intact beagles [17, 21, 48, 73, 75-79].
255	
256	
250	In contrast to anti-catabolic agents, PTH has anabolic effects on trabecular bone

257 formation which are modulated through both bone modeling and remodeling activity

258 [80]. PTH stimulates trabecular surface modeling [32, 81-83] and affects remodeling by 259 altering the balance at each remodeling site to favor bone formation [28, 51]. 260 Enhancement of trabecular bone volume and bone remodeling have been shown in 261 postmenopausal women treated with intermittent PTH [29, 32, 84] although other studies 262 have shown no significant difference from baseline biopsies in PTH-treated patients for 263 trabecular formation activity or bone mass [28, 85]. In ovariectomized non-human 264 primates, multiple skeletal sites (femoral neck, tibia, distal radius, and vertebra) showed 265 no difference in PTH versus controls for trabecular bone formation rate although bone 266 formation was stimulated on endocortical surfaces of the mid-radius and mid-femur [86]. 267 Conversely, a separate study showed enhanced bone formation activity on trabecular 268 bone surfaces of the femoral neck with PTH [49]. Changes with PTH treatment are most 269 consistent in intact animals, with increases in trabecular/endocortical bone remodeling 270 having been documented in ewes [87], beagles [51, 88], and rabbits [35, 36]. These pre-271 clinical models have shown enhancement of trabecular bone formation activity with PTH 272 results in increased trabecular bone volume by initially producing thicker trabeculae, and 273 then over time via trabecular tunneling [89], normalizing trabecular thickness and 274 enhancing trabecular number and connectivity [28, 30, 88, 90].

275

276 Summary- Trabecular/Endocortical surfaces (Table 1)

Enhanced trabecular/endocortical remodeling at menopause leads to loss of bone mass
and architectural integrity. Anti-catabolic osteoporosis agents, HRT, SERMs, and
bisphosphonates, suppress remodeling and result in maintenance of trabecular bone
volume and architecture. By suppressing the deterioration of trabecular bone, these

281 agents all maintain the biomechanical integrity of skeletal sites containing appreciable 282 amounts of trabecular bone. Conversely, anabolic treatment with PTH enhances bone 283 formation activity on trabecular surfaces which positively affects trabecular bone volume 284 and architecture. Based on these effects, both anti-catabolic and anabolic agents have 285 value for trabecular/endocortical bone with the optimal choice depending on whether the 286 goal of treatment is slowing deterioration (anti-catabolic agents) or actively enhancing 287 (anabolic) bone mass and architecture.

288

289 Conclusions

290 Alterations to bone formation activity on the periosteal, intracortical, and 291 trabecular/endocortical surfaces imparted by anti-osteoporosis treatments have unique 292 influences on bone biomechanics. Although all of the anti-catabolic agents 293 (estrogen/hormone replacement therapy, SERMs, bisphosphonates) exert positive effects 294 on the various bone surfaces, bisphosphonates provide a unique biomechanical 295 combination by allowing normal periosteal expansion while limiting bone loss on 296 intracortical and trabecular/endocortical surfaces. PTH, the only FDA-approved 297 anabolic, also exerts biomechanically favorable alterations to bone formation on the 298 various bone surfaces through enhanced activity on trabecular/endocortical surfaces 299 combined with allowing normal periosteal expansion. As new agents gain approval for 300 treatment postmenopausal osteoporosis it will be advantageous to understand how they 301 each affect the various bone surfaces in order to determine the mechanism(s) through 302 which they reduce fracture risk. Equally, if not more important is that this information 303 will help advance our understanding of surface-specific regulation of bone formation

- 304 which ideally can be utilized to design agents that specifically target a particular bone
- 305 surface.
- 306

	Estrogen/Hormone Replacement Therapy	Selective Estrogen Receptor Modulators	Bisphosphonates	Parathyroid Hormone
Periosteal				
Postmenopausal women	Decrease		No effect	Increase
Ovariectomized animals	Decrease	No effect	No effect	
Intact animals	Decrease	Increase	No effect	Increase
Intracortical				
Postmenopausal women	Decrease		No effect / Decrease	
Ovariectomized animals	Decrease	Decrease	Decrease	Increase
Intact animals		No effect	Decrease	Increase
Endocortical/Trabecular				
Postmenopausal women	Decrease	Decrease	Decrease	Increase
Ovariectomized animals	Decrease	Decrease	Decrease	Increase
Intact animals		Decrease	Decrease	Increase

308 Table 1. Summary of pharmaceutical effects on surface-specific bone formation*

310 *In cases where conflicting data exist (see text), the stated effect represents the majority

311 response. (--) signifies there are no data available.

312

309

313 Figure Legends

- 314
- 315 Fig. 1. Anti-osteoporosis pharmaceutical agents impart their skeletal effects in part by
- 316 altering bone remodeling/modeling on periosteal (B, arrowhead), intracortical (B, arrow),
- 317 trabecular (C), and endocortical (D) bone surfaces. Scale bar = 1 mm(A) or 500 μ m (B-
- 318 D).
- 319
- 320

321 References

322 1. Cummings, S.R., D.B. Karpf, F. Harris, H.K. Genant, et al., Improvement in spine 323 bone density and reduction in risk of vertebral fractures during treatment with 324 antiresorptive drugs. 2002 Am J Med. 112(4): p. 281-9. 325 2. Marcus, R., M. Wong, H. Heath, 3rd, and J.L. Stock, Antiresorptive treatment of 326 postmenopausal osteoporosis: comparison of study designs and outcomes in large 327 clinical trials with fracture as an endpoint. 2002 Endocr Rev. 23(1): p. 16-37. 3. 328 Rosen, C. and J. Bilezikian, Anabolic therapy for osteoporosis. 2001 J Clin 329 Endocrinol Metab. 86(3): p. 957-964. 330 Riggs, B.L. and A.M. Parfitt, Drugs used to treat osteoporosis: the critical need 4. 331 for a uniform nomenclature based on their action on bone remodeling. 2005 J 332 Bone Miner Res. 20(2): p. 177-84. 333 5. Allen, M.R., J.M. Hock, and D.B. Burr, Periosteum: biology, regulation, and 334 response to osteoporosis therapies. 2004 Bone. 35(5): p. 1003-1012. 335 6. Bliziotes, M., J.D. Sibonga, R.T. Turner, and E. Orwoll, Periosteal remodeling at 336 the femoral neck in nonhuman primates. 2006 J Bone Miner Res. 21(7): p. 1060-337 7. 338 7. Orwoll, E., Toward an expanded understanding of the role of the periosteum in 339 skeletal health. 2003 J Bone Miner Res. 18(6): p. 949-954. 340 Balena, R., M.S. Shih, and A.M. Parfitt, Bone resorption and formation on the 8. 341 periosteal envelope of the ilium: a histomorphometric study in healthy women. 342 1992 J Bone Miner Res. 7(12): p. 1475-82. 343 9. Alhlborg, H., O. Johnell, C. Turner, G. Rannevik, et al., Bone loss and bone size 344 after menopause. 2003 N Engl J Med. 349(4): p. 327-34. 345 10. Beck, T.J., C.B. Ruff, W.W. Scott, Jr., C.C. Plato, et al., Sex differences in 346 geometry of the femoral neck with aging: a structural analysis of bone mineral 347 data. 1992 Calcif Tissue Int. 50(1): p. 24-9. 348 11. Burr, D.B. and C.H. Turner, *Biomechanics of bone*, in *Primer on the Metabolic* 349 Bone Diseases and Disorders of Mineral Metabolism, M. Favus, Editor. 2003, 350 American Society for Bone and Mineral Research: Washington DC. p. 58-64. 351 12. Turner, R.T., B.L. Riggs, and T.C. Spelsberg, Skeletal effects of estrogen. 1994 Endocr Rev. 15(3): p. 275-300. 352 353 Turner, R.T., K.S. Hannon, L.M. Demers, J. Buchanan, et al., Differential effects 13. 354 of gonadal function on bone histomorphometry in male and female rats. 1989 J 355 Bone Miner Res. 4(4): p. 557-63. Wakley, G.K., G.L. Evans, and R.T. Turner, Short-term effects of high dose 356 14. 357 estrogen on tibiae of growing male rats. 1997 Calcif Tissue Int. 60(1): p. 37-42. 358 15. Lees, C.J., T.C. Register, C.H. Turner, T. Wang, et al., Effects of raloxifene on 359 bone density, biomarkers, and histomorphometric and biomechanical measures in ovariectomized cynomolgus monkeys. 2002 Menopause. 9(5): p. 320-8. 360 361 16. Recker, R., T. Coble, A. Burshell, A. Lombardi, et al., Effect of Alendronate and 362 Estrogen Replacement on Periosteal Bone Formation in Postmenopausal Women. 2001 J Bone Miner Res. 16: p. 1176. 363

364	17.	Allen, M.R., H. Follet, M. Khurana, and D.B. Burr, Anti-remodeling agents
365		influence osteoblast activity differently in modeling- and remodeling-associated
366		bone formation 2006 Calcified Tissue International. 79(4): p. 255-61.
367	18.	Bare, S., S. Recker, R. Recker, and D. Kimmel, Influence of alendronate on
368		periosteal and endocortical bone formation in the illium of osteoporotic women.
369		2005 J Bone Miner Res. 20: p. SA414.
370	19.	Mashiba, T., T. Hirano, C.H. Turner, M.R. Forwood, et al., Suppressed bone
371		turnover by bisphosphonates increases microdamage accumulation and reduces
372		some biomechanical properties in dog rib. 2000 J Bone Miner Res. 15(4): p. 613-
373		20.
374	20.	Komatsubara, S., S. Mori, T. Mashiba, J. Li, et al., Suppressed bone turnover by
375		long-term bisphosphonate treatment accumulates microdamage but maintains
376		intrinsic material properties in cortical bone of dog rib 2004 J Bone Miner Res
377		19(6): n 999-1005
378	21	Allen MR S Reinwald and DB Burr Alendronate reduces bone toughness of
379	21.	ribs without significantly increasing microdamage accumulation in dogs
380		following 3 years of daily treatment 2008 Calcif Tissue Int. May 8 [Epub ahead
381		of print]
382	22	Yoshida Y A Moriva K Kitamura M Inazu et al Responses of trabecular
383		and cortical bone turnover and bone mass and strength to bisphosphonate YH529
384		in ovariohysterectomized beagles with calcium restriction 1998 I Bone Miner
385		Res 13(6): n 1011-22
386	23	Lafage MH R Balena MA Battle M Shea et al Comparison of alendronate
387	20.	and sodium fluoride effects on cancellous and cortical bone in minings A one-
388		vear study 1995 J Clin Invest 95(5): p 2127-33
389	24	Bikle D E Morey-Holton S Doty P Currier et al Alendronate increases
390		skeletal mass of growing rats during unloading by inhibiting resorption of
391		calcified cartilage 1994 J Bone Miner Res 9(11) p 1777-1787
392	25	Iwata K J Li H Follet R J Phipps et al Bisphosphonates suppress periosteal
393		osteoblast activity independent of resorption in rat femur and tibia. 2006 Bone.
394		39(5): p. 1053-8.
395	26.	Nakamura, M., N. Udagawa, S. Matsuura, M. Mogi, et al., Osteoprotegerin
396		regulates bone formation through a coupling mechanism with bone resorption.
397		2003 Endocrinology 144(12): p 5441-9
398	27	Parfitt A M Parathyroid hormone and periosteal bone expansion 2002 J Bone
399	_/.	Miner Res 17(10): p 1741-3
400	28	Dempster D W F Cosman E S Kurland H Zhou et al Effects of daily
401	20.	treatment with parathyroid hormone on bone microarchitecture and turnover in
402		patients with osteoporosis: a paired biopsy study 2001 J Bone Miner Res 16(10):
403		n 1846-53
404	29	Hodsman, A.B., M. Kisiel, J.D. Adachi, L.J. Fraher et al. Histomorphometric
405	- 2.	evidence for increased bone turnover without change in cortical thickness or
406		porosity after 2 years of cyclical hPTH(1-34) therapy in women with severe
407		osteoporosis. 2000 Bone. 27(2): p. 311-318

408	30.	Jiang, Y., J.J. Zhao, B.H. Mitlak, O. Wang, et al., Recombinant human
409		parathyroid hormone (1-34) [teriparatide] improves both cortical and cancellous
410		bone structure. 2003 J Bone Miner Res. 18(11): p. 1932-41.
411	31.	Dempster, D., H. Zhou, F. Cosman, J. Nieves, et al., PTH treatment directly
412		stimulates bone formation in cancellous and cortical bone in humans. 2001 J Bone
413		Miner Res. 16 (Supp 1): p. S179.
414	32.	Lindsay, R., H. Zhou, F. Cosman, J. Nieves, et al., Effects of a one-month
415		treatment with PTH(1-34) on bone formation on cancellous, endocortical, and
416		periosteal surfaces of the human ilium. 2007 J Bone Miner Res. 22(4): p. 495-
417		502.
418	33.	Arlot, M., P.J. Meunier, G. Boivin, L. Haddock, et al., Differential effects of
419		teriparatide and alendronate on bone remodeling in postmenopausal women
420		assessed by histomorphometric parameters. 2005 J Bone Miner Res. 20(7): p.
421		1244-53.
422	34.	Hirano, T., D.B. Burr, R.L. Cain, and J.M. Hock, Changes in geometry and
423		cortical porosity in adult, ovary-intact rabbits after 5 months treatment with
424		LY333334 (hPTH 1-34). 2000 Calcif Tissue Int. 66(6): p. 456-60.
425	35.	Hirano, T., D.B. Burr, C.H. Turner, M. Sato, et al., Anabolic effects of human
426		biosynthetic parathyroid hormone fragment (1-34), LY333334, on remodeling and
427		mechanical properties of cortical bone in rabbits. 1999 J Bone Miner Res. 14(4):
428		p. 536-45.
429	36.	Mashiba, T., D.B. Burr, C.H. Turner, M. Sato, et al., Effects of human parathyroid
430		hormone (1-34), LY333334, on bone mass, remodeling, and mechanical
431		properties of cortical bone during the first remodeling cycle in rabbits. 2001 Bone.
432		28(5): p. 538-47.
433	37.	Burr, D.B., Remodeling and the repair of fatigue damage. 1993 Calcif Tissue Int.
434		53 Suppl 1: p. S75-80; discussion S80-1.
435	38.	Seeman, E. and P.D. Delmas, Bone qualitythe material and structural basis of
436		bone strength and fragility. 2006 N Engl J Med. 354(21): p. 2250-61.
437	39.	Martin, R.B., D.B. Burr, and N.A. Sharkey, Skeletal Tissue Mechanics. 1998,
438		New York: Springer.
439	40.	Tommasini, S.M., P. Nasser, B. Hu, and K.J. Jepsen, Biological co-adaptation of
440		morphological and composition traits contributes to mechanical functionality and
441		skeletal fragility. 2008 J Bone Miner Res. 23(2): p. 236-46.
442	41.	Bell, K.L., N. Loveridge, P.C. Lindsay, M. Lunt, et al., Cortical remodeling
443		following suppression of endogenous estrogen with analogs of gonadotrophin
444		releasing hormone. 1997 J Bone Miner Res. 12(8): p. 1231-40.
445	42.	Vedi, S., K.L. Bell, N. Loveridge, N. Garrahan, et al., The effects of hormone
446		replacement therapy on cortical bone in postmenopausal women. A
447		histomorphometric study. 2003 Bone. 33(3): p. 330-334.
448	43.	Eriksen, E.F., F. Melsen, E. Sod, I. Barton, et al., Effects of long-term risedronate
449		on bone quality and bone turnover in women with postmenopausal osteoporosis.
450		2002 Bone. 31(5): p. 620-5.
451	44.	Dufresne, T., P. Chmielewski, M. Manhart, T. Johnson, et al., Risedronate
452		preserves bone architecture in early postmenopausal women in 1 year as

453		measured by three-dimensional microcomputed tomography. 2003 Calcif Tissue
454		Int. 73(5): p. 423-32.
455	45.	Roschger, P., S. Rinnerthaler, J. Yates, G.A. Rodan, et al., Alendronate increases
456		degree and uniformity of mineralization in cancellous bone and decreases the
457		porosity in cortical bone of osteoporotic women. 2001 Bone. 29(2): p. 185-91.
458	46.	Itoh, F., M. Kojima, H. Furihata-Komatsu, S. Aoyagi, et al., Reductions in bone
459		mass, structure, and strength in axial and appendicular skeletons associated with
460		increased turnover after ovariectomy in mature cynomolgus monkeys and
461		preventive effects of clodronate. 2002 J Bone Miner Res. 17(3): p. 534-43.
462	47.	Smith, S.Y., R.R. Recker, M. Hannan, R. Muller, et al., Intermittent intravenous
463		administration of the bisphosphonate ibandronate prevents bone loss and
464		maintains bone strength and quality in ovariectomized cynomolgus monkeys.
465		2003 Bone. 32(1): p. 45-55.
466	48.	Mashiba, T., S. Hui, C.H. Turner, S. Mori, et al., Bone remodeling at the iliac
467		crest can predict the changes in remodeling dynamics, microdamage
468		accumulation, and mechanical properties in the lumbar vertebrae of dogs. 2005
469		Calcif Tissue Int. 77(3): p. 180-5.
470	49.	Sato, M., M. Westmore, Y.L. Ma, A. Schmidt, et al., Teriparatide [PTH(1-34)]
471		strengthens the proximal femur of ovariectomized nonhuman primates despite
472		increasing porosity. 2004 J Bone Miner Res. 19(4): p. 623-9.
473	50.	Burr, D., T. Hirano, C. Turner, C. Hotchkiss, et al., Intermittently administered
474		human parathyroid hormone(1-34) treatment increases intracortical bone turnover
475		and porosity without reducing bone strength in the humerus of ovariectomized
476		cynomolgus monkeys. 2001 Journal of Bone and Mineral Research. 16: p. 157-
477		165.
478	51.	Boyce, R.W., C.L. Paddock, A.F. Franks, M.L. Jankowsky, et al., Effects of
479		intermittent hPTH(1-34) alone and in combination with 1,25(OH)(2)D(3) or
480		risedronate on endosteal bone remodeling in canine cancellous and cortical bone.
481		1996 J Bone Miner Res. 11(5): p. 600-13.
482	52.	Han, Z.H., S. Palnitkar, D.S. Rao, D. Nelson, et al., Effects of ethnicity and age or
483		menopause on the remodeling and turnover of iliac bone: implications for
484		mechanisms of bone loss. 1997 J Bone Miner Res. 12(4): p. 498-508.
485	53.	Recker, R., J. Lappe, K.M. Davies, and R. Heaney, Bone remodeling increases
486		substantially in the years after menopause and remains increased in older
487		osteoporosis patients. 2004 J Bone Miner Res. 19(10): p. 1628-33.
488	54.	Weinstein, R.S., A.M. Parfitt, R. Marcus, M. Greenwald, et al., Effects of
489		raloxifene, hormone replacement therapy, and placebo on bone turnover in
490		postmenopausal women. 2003 Osteoporos Int. 14(10): p. 814-22.
491	55.	Borah, B., T.E. Dufresne, P.A. Chmielewski, T.D. Johnson, et al., Risedronate
492		preserves bone architecture in postmenopausal women with osteoporosis as
493		measured by three-dimensional microcomputed tomography. 2004 Bone. 34(4): p.
494		736-46.
495	56.	Bevill, G., S.K. Eswaran, A. Gupta, P. Papadopoulos, et al., Influence of bone
496		volume fraction and architecture on computed large-deformation failure
497		mechanisms in human trabecular bone. 2006 Bone. 39(6): p. 1218-25.

498	57.	Lufkin, E.G., H.W. Wahner, W.M. O'Fallon, S.F. Hodgson, et al., Treatment of
499		postmenopausal osteoporosis with transdermal estrogen. 1992 Ann Intern Med.
500		117(1): p. 1-9.
501	58.	Prestwood, K.M., M. Gunness, D.B. Muchmore, Y. Lu, et al., A comparison of
502		the effects of raloxifene and estrogen on bone in postmenopausal women. 2000 J
503		Clin Endocrinol Metab. 85(6): p. 2197-202.
504	59.	Riggs, B.L., J. Jowsey, R.S. Goldsmith, P.J. Kelly, et al., Short- and long-term
505		effects of estrogen and synthetic anabolic hormone in postmenopausal
506		osteoporosis. 1972 J Clin Invest. 51(7): p. 1659-63.
507	60.	Vedi, S. and J.E. Compston, The effects of long-term hormone replacement
508		therapy on bone remodeling in postmenopausal women. 1996 Bone. 19(5): p.
509		535-9.
510	61.	Eriksen, E.F., B. Langdahl, A. Vesterby, J. Rungby, et al., Hormone replacement
511		therapy prevents osteoclastic hyperactivity: A histomorphometric study in early
512		postmenopausal women. 1999 J Bone Miner Res. 14(7): p. 1217-21.
513	62.	Khastgir, G., J. Studd, N. Holland, J. Alaghband-Zadeh, et al., Anabolic effect of
514		estrogen replacement on bone in postmenopausal women with osteoporosis:
515		histomorphometric evidence in a longitudinal study. 2001 J Clin Endocrinol
516		Metab. 86(1): p. 289-95.
517	63.	Patel, S., M. Pazianas, J. Tobias, T.J. Chambers, et al., Early effects of hormone
518		replacement therapy on bone. 1999 Bone. 24(3): p. 245-8.
519	64.	Vedi, S., D.W. Purdie, P. Ballard, S. Bord, et al., Bone remodeling and structure
520		in postmenopausal women treated with long-term, high-dose estrogen therapy.
521		1999 Osteoporos Int. 10(1): p. 52-8.
522	65.	Ott, S.M., A. Oleksik, Y. Lu, K. Harper, et al., Bone histomorphometric and
523		biochemical marker results of a 2-year placebo-controlled trial of raloxifene in
524		postmenopausal women. 2002 J Bone Miner Res. 17(2): p. 341-8.
525	66.	Ham, K.D. and C.S. Carlson, Effects of estrogen replacement therapy on bone
526		turnover in subchondral bone and epiphyseal metaphyseal cancellous bone of
527		ovariectomized cynomolgus monkeys. 2004 J Bone Miner Res. 19(5): p. 823-9.
528	67.	Allen, M.R., K. Iwata, M. Sato, and D.B. Burr, Raloxifene enhances vertebral
529		mechanical properties independent of bone density. 2006 Bone. 39: p. 1130-1135.
530	68.	Chavassieux, P.M., M.E. Arlot, C. Reda, L. Wei, et al., Histomorphometric
531		assessment of the long-term effects of alendronate on bone quality and
532		remodeling in patients with osteoporosis. 1997 J Clin Invest. 100(6): p. 1475-80.
533	69.	Stepan, J.J., D.B. Burr, I. Pavo, A. Sipos, et al., Low bone mineral density is
534		associated with bone microdamage accumulation in postmenopausal women with
535		osteoporosis. 2007 Bone. 41(3): p. 378-85.
536	70.	Recker, R., P. Masarachia, A. Santora, T. Howard, et al., Trabecular bone
537		microarchitecture after alendronate treatment of osteoporotic women. 2005 Curr
538		Med Res Opin. 21(2): p. 185-94.
539	71.	Recker, R.R., R.S. Weinstein, C.H. Chesnut, 3rd, R.C. Schimmer, et al.,
540		Histomorphometric evaluation of daily and intermittent oral ibandronate in
541		women with postmenopausal osteoporosis: results from the BONE study. 2004
542		Osteoporos Int. 15(3): p. 231-7.

543	72.	Recker, R.R., P.D. Delmas, J. Halse, I.R. Reid, et al., Effects of intravenous
544		zoledronic acid once yearly on bone remodeling and bone structure. 2008 J Bone
545		Miner Res. 23(1): p. 6-16.
546	73.	Balena, R., B.C. Toolan, M. Shea, A. Markatos, et al., The effects of 2-year
547		treatment with the aminobisphosphonate alendronate on bone metabolism, bone
548		histomorphometry, and bone strength in ovariectomized nonhuman primates.
549		1993 J Clin Invest. 92(6): p. 2577-86.
550	74.	Monier-Faugere, M.C., Z. Geng, E.P. Paschalis, Q. Qi, et al., Intermittent and
551		continuous administration of the bisphosphonate ibandronate in
552		ovariohysterectomized beagle dogs: effects on bone morphometry and mineral
553		properties. 1999 J Bone Miner Res. 14(10): p. 1768-78.
554	75.	Allen, M.R. and D.B. Burr, Three years of alendronate treatment results in similar
555		levels of vertebral microdamage as after one year of treatment. 2007 J Bone
556		Miner Res. 22(11): p. 1759-65.
557	76.	Allen, M.R., K. Iwata, R. Phipps, and D.B. Burr, Alterations in canine vertebral
558		bone turnover, microdamage accumulation, and biomechanical properties
559		following 1-year treatment with clinical treatment doses of risedronate or
560		alendronate. 2006 Bone. 39(4): p. 872-9.
561	77.	Forwood, M.R., D.B. Burr, Y. Takano, D.F. Eastman, et al., Risedronate
562		treatment does not increase microdamage in the canine femoral neck. 1995 Bone.
563		16(6): p. 643-650.
564	78.	Komatsubara, S., S. Mori, T. Mashiba, M. Ito, et al., Long-term treatment of
565		incadronate disodium accumulates microdamage but improves the trabecular bone
566		microarchitecture in dog vertebra. 2003 J Bone Miner Res. 18(3): p. 512-20.
567	79.	Mashiba, T., C.H. Turner, T. Hirano, M.R. Forwood, et al., Effects of suppressed
568		bone turnover by bisphosphonates on microdamage accumulation and
569		biomechanical properties in clinically relevant skeletal sites in beagles. 2001
570		Bone. 28(5): p. 524-31.
571	80.	Allen, M. and D. Burr, Parathyroid hormone and bone biomechanics. 2006
572		Clinical Reviews in Bone and Mineral Metabolism. 4(4): p. 259-268.
573	81.	Burr, D.B., Does early PTH treatment compromise bone strength? The balance
574		between remodeling, porosity, bone mineral, and bone size. 2005 Curr Osteoporos
575		Rep. 3(1): p. 19-24.
576	82.	Dobnig, H. and R.T. Turner, Evidence that intermittent treatment with parathyroid
577		hormone increases bone formation in adult rats by activation of bone lining cells.
578		1995 Endocrinology. 136(8): p. 3632-8.
579	83.	Hodsman, A.B. and B.M. Steer, Early histomorphometric changes in response to
580		parathyroid hormone therapy in osteoporosis: evidence for de novo bone
581		formation on quiescent cancellous surfaces. 1993 Bone. 14(3): p. 523-7.
582	84.	Reeve, J., P.J. Meunier, J.A. Parsons, M. Bernat, et al., Anabolic effect of human
583		parathyroid hormone fragment on trabecular bone in involutional osteoporosis: a
584	05	multicentre trial. 1980 Br Med J. 280(6228): p. 1340-4.
585	85.	Miki, I., K. Nakatsuka, H. Naka, H. Masaki, et al., Effect and safety of
586		intermittent weekly administration of human parathyroid hormone 1-34 in
587		patients with primary osteoporosis evaluated by histomorphometry and

588		microstructural analysis of iliac trabecular bone before and after 1 year of
589		treatment. 2004 J Bone Miner Metab. 22(6): p. 569-76.
590	86.	Jerome, C.P., C.S. Johnson, H.T. Vafai, K.C. Kaplan, et al., Effect of treatment
591		for 6 months with human parathyroid hormone (1-34) peptide in ovariectomized
592		cynomolgus monkeys (Macaca fascicularis). 1999 Bone. 25(3): p. 301-9.
593	87.	Delmas, P.D., P. Vergnaud, M.E. Arlot, P. Pastoureau, et al., The anabolic effect
594		of human PTH (1-34) on bone formation is blunted when bone resorption is
595		inhibited by the bisphosphonate tiludronateis activated resorption a prerequisite
596		for the in vivo effect of PTH on formation in a remodeling system? 1995 Bone.
597		16(6): p. 603-10.
598	88.	Zhang, L., H.E. Takahashi, J. Inoue, T. Tanizawa, et al., Effects of intermittent
599		administration of low dose human PTH(1-34) on cancellous and cortical bone of
600		lumbar vertebral bodies in adult beagles. 1997 Bone. 21(6): p. 501-6.
601	89.	Jerome, C.P., D.B. Burr, T. Van Bibber, J.M. Hock, et al., Treatment with human
602		parathyroid hormone (1-34) for 18 months increases cancellous bone volume and
603		improves trabecular architecture in ovariectomized cynomolgus monkeys
604		(Macaca fascicularis). 2001 Bone. 28(2): p. 150-159.
605	90.	Sato, M., M. Westmore, J. Clendenon, S. Smith, et al., Three-dimensional
606		modeling of the effects of parathyroid hormone on bone distribution in lumbar
607		vertebrae of ovariectomized cynomolgus macaques. 2000 Osteoporos Int. 11(10):
608		p. 871-80.
609		

