41 research outputs found

    Dose-response relationship between abamectin and mortality of Panonychus ulmi (Acari: Tetranychidae)

    Get PDF
    60-65In this study, the dose-response relationship between abamectin and mortality of larval and adult forms of Panonychus ulmi (Koch) was established. Abamectin was investigated at a dilution series of 1/1, 1/1.15, 1/1.35, 1/1.6, 1/2, 1/2.55, 1/4, 1/8 and 1/16 of its field recommended concentration, in order to calculate the ECi – values. Results showed that the lowest ECi – values were observed on larvae, which showed high sensitivity to abamectin than adults. Both statistical models led to satisfactory findings and the linear model was ranked as the best model for describing the dose-response relationship. This research highlighted the importance of toxicity risk assessments to obtain a more accurate estimation of the compatibility of abamectin in the integrated pest management (IPM) programs

    L’effet de quatre variétés de pommier sur la biologie et la démographie de l’acarien rouge: Table de vie à deux sexes de Panonychus ulmi (Acari: Tetranychidae)

    Get PDF
    The effect of four apple varieties on the development and reproduction of the European red spider mite Panonychus ulmi (Koch, 1836) (Prostigmata: Tetranychidae) was studied under the controlled conditions of 25 ± 1 °C, Relative Humidity of 65 ± 5 % and photoperiod of 16:8 (L:D). The age-stage two-sex life tables of P. ulmi on Golden Delicious, Red Shief, Jeromine and Gala varieties were constructed. Based on higher values of fecundities (38.5 and 35.1 eggs / female) and the intrinsic rates of increase (rm) of 0.1643 and 0.1521 day-1, Panonychus ulmi developed better on Golden Delicious and Red Shief among the varieties tested. Results show that the developmental time of female adults was shorter on Golden delicious and (11.2 days). Immature survival of P. ulmi was significantly higher on Golden delicious, Jeromine and Red Shief (79.1, 76.5 and 72.3 %,respectively), and lower on the Gala variety (64.5 %). In the light of these results, Panonychus ulmi develop and reproduce quickly on Golden Delicious and Red Shief varieties among the four varieties tested. Establishment of two-sex life tables of P. ulmi on apple varieties facilitates the rational management of this phytophagous mite according to the principles of integrated management. Keywords: Panonychus ulmi, life table, apple, fecundity, Development, ReproductionL’effet de quatre variétés de pommier sur le développement et la reproduction de Tétranyque rouge de pommier Panonychus ulmi (Koch, 1836) (Prostigmata: Tetranychidae) a été étudié sous conditions contrôlées de 25 ± 1 °C, humidité relative de 65 ± 5% et photopériode de 16:8 (L:D). Les tables de vie à deux sexes de P. ulmi sur Golden delicious, Red Shief, Jeromine et la variété Gala ont été construites. En se basant sur les valeurs élevées de fécondités (38,5 et 35,1 œufs/femelle) et les taux intrinsèques de croissance (rm) de 0,1643 et 0,1521 jour-1, Panonychus ulmi s’est mieux développé sur Golden delicious et Red Shief que les autres variétés testées. Les résultats montrent aussi que le temps de développement total des femelles immatures était plus court sur Golden delicious (11,2 jours). La survie des immatures a été significativement élevée sur Golden Delicious, Jeromine et Red Shief (79,1; 76,5 et 72,3 %, respectivement) et faible sur la variété Gala (64,5 %). A la lumière de ces résultats, Panonychus ulmi se développe et se reproduit rapidement sur les variétés de Golden Delicious et Red Shief parmi les quatre variétés testées. L’établissement des tables de vie à deux sexes de P. ulmi sur les variétés de pommier facilite la gestion raisonnée de cet acarien phytophage conformément aux principes de la gestion intégrée. Mots clés: Panonychus ulmi, table de vie, pommier, fécondité, développement, reproductio

    Dose-response relationship between abamectin and mortality of Panonychus ulmi (Acari: Tetranychidae)

    Get PDF
    In this study, the dose-response relationship between abamectin and mortality of larval and adult forms of Panonychus ulmi (Koch) was established. Abamectin was investigated at a dilution series of 1/1, 1/1.15, 1/1.35, 1/1.6, 1/2, 1/2.55, 1/4, 1/8 and 1/16 of its field recommended concentration, in order to calculate the ECi – values. Results showed that the lowest ECi – values were observed on larvae, which showed high sensitivity to abamectin than adults. Both statistical models led to satisfactory findings and the linear model was ranked as the best model for describing the dose-response relationship. This research highlighted the importance of toxicity risk assessments to obtain a more accurate estimation of the compatibility of abamectin in the integrated pest management (IPM) program

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Neoseiulus alpinus Schweizer 1922

    No full text
    <i>Neoseiulus alpinus</i> (Schweizer, 1922) <p> <i>Amblyseius obtustus</i> var. <i>alpinus</i> Schweizer, 1922: 41.</p> <p> <i>Amblyseius alpinus</i>.—Schweizer, 1949: 79.</p> <p> <i>Typhlodromus</i> (<i>Amblyseius</i>) <i>alpinus</i>.—Chant, 1959: 105.</p> <p> <i>Typhlodromus</i> (<i>Typhlodromus</i>) <i>alpinus</i>.—Westerboer & Bernhard, 1963: 651. <i>Amblyseius</i> (<i>Neoseiulus</i>) <i>alpinus</i>.—Karg, 1993: 189.</p> <p> <i>Neoseiulus alpinus</i>.—Evans, 1987: 1461; Moraes <i>et al</i>., 2004: 100; Chant & McMurtry, 2007: 25. <i>Neoseiulus aurescens</i>.—Tuttle & Muma, 1973: 20.</p> <p> This species is observed rarely on crops, sometimes in apple orchards and on strawberries, where it seems able to control <i>T</i>. <i>urticae</i> and <i>Phytonemus pallidus</i> (Banks) (Fitzgerald <i>et al</i>., 2008). Studies in USSR discovered the thelytoky in this species. This is the first record of this species in Morocco.</p> <p> <b>Specimens examined: 2003, Larache Beach</b> on <i>Echium vulgare</i> (Boraginaceae) (1 female).</p> <p> <b>Previous records:</b> Algeria, Australia, Austria, Belgium, Chile (Ragusa & Vargas, 2002), Cuba, Czech Republic, England, Finland, France, Georgia, Germany, Greece, Hawai, Hungary, Italy, Jordan, Latvia, Norway, Poland, Portugal, Russia, Slovakia, Spain, Switzerland, Turkey, Tunisia, Ukraine, USA.</p>Published as part of <i>Tixier, Marie-Stephane, Allam, Latifa, Douin, Martial & Kreiter, Serge, 2016, Phytoseiidae (Acari: Mesostigmata) of Morocco: new records, descriptions of five new species, re-descriptions of two species, and key for identification, pp. 501-551 in Zootaxa 4067 (5)</i> on pages 511-512, DOI: 10.11646/zootaxa.4067.5.1, <a href="http://zenodo.org/record/270636">http://zenodo.org/record/270636</a&gt

    Typhlodromus (Typhlodromus) mazarii Allam, Tixier & Kreiter, new species

    No full text
    <i>Typhlodromus</i> (<i>Typhlodromus</i>) <i>mazarii</i> Allam, Tixier & Kreiter, new species <p> <b>Specimens examined: Holotype:</b> female collected at <b>Cap Mazari</b> from <i>Cistus parviflorus</i> L. (Cistaceae) May, 22, 2003. Two males and 23 paratype females, from the same plant material and same location. Deposited in the Montpellier SupAgro—INRA Acarology collection. Two paratype females in the University of Meknes.</p> <p> <b>Otherspecimens: Mazari Cape</b> (35°32'N, 5°12'W) on <i>Anagallis molli</i> (Primulaceae) (1 female), <i>Lavandula dentata</i> (Lamiaceae) (5 females), <i>Lavatera maritima</i> (Malvaceae) (1 female), <i>Cistus libalotis</i> (Cistaceae) (20 females), <b>Near Larache</b> (35°02'N, 6°02'W) on <i>Calycotome villosa</i> (Fabaceae) (4 females).</p> <p> <b>Description of the adult female</b> (n = 17) (Figs 32–35).</p> <p> <b>Diagnosis</b>. Dorsal shield lightly reticulated with four pairs of solenostomes (<i>gd2</i>, <i>gd6</i>, <i>gd8</i>, <i>gd9</i>). Long and smooth dorsal setae except <i>Z4</i> and <i>Z5</i> (serrated). Sternal shield with two pairs of setae, posterior margin convex. Peritreme extending to <i>j1</i> and <i>j3</i>. Ventri-anal shield pentagonal with four pairs of pre-anal setae and no pre-anal pores. Chelicerae with three teeth on fixed digit and one tooth on movable digit. Calyx of spermatheca saccular with a neck between atrium and cervix. Genu II with eight setae. Leg IV with a macroseta on basitarsus.</p> <p> <b> <i>Dorsum</i> (Fig. 32)</b> . Dorsal shield 344 (328–363) long and 192 (180–228) wide, lightly reticulated, with four solenostomes (<i>gd2</i>, <i>gd6</i>, <i>gd8</i> and <i>gd9</i>), 10 pairs of poroids, 17 pairs of dorsal setae and two pairs of sub-lateral setae: <i>j1</i> 32 (30–33), <i>j3</i> 42 (38–48), <i>j4</i> 25 (23–28), <i>j5</i> 28 (25–30), <i>j6</i> 36 (33–40), <i>J2</i> 48 (45–58), <i>J5</i> 10 (8–10), <i>z2</i> 27 (23–30), <i>z3</i> 40 (38–43), <i>z4</i> 39 (35–40), <i>z5</i> 35 (33–43), <i>Z4</i> 70 (65–75), <i>Z5</i> 91 (85–95), <i>s4</i> 45 (43–48), <i>s6</i> 54 (53–58), <i>S2</i> 56 (45–60), <i>S4</i> 58 (53–60), <i>r3</i> 41 (38–45), <i>R1</i> 43 (40–48). All setae smooth except <i>Z4</i> and <i>Z5</i> slighly serrated. Peritreme extending between <i>j1</i> and <i>j3</i> (Fig. 32).</p> <p> <b> <i>Venter</i> (Fig. 33)</b> . Sternal shield with two pairs of setae and two pairs of lyrifissures; two pairs of sternal setae and lyrifissures on small metasternal plates; posterior margin convex. Distances between <i> ST1 <i>–</i> ST3</i> 61 (48–65), <i> ST2 <i>–</i> ST2</i> 58 (53–73), <i>ST5–ST5</i> 55 (53–60). Two pairs of metapodal plates 28 (25–30) long, 4 (3–5) wide for the largest and 14 (13–15) long, 2 (2–3) wide for the smallest. Ventri-anal shield reticulated with four pairs of pre-anal setae, <i>JV1</i>, <i>JV2</i>, <i>JV3</i> and <i>ZV2</i>, and no pre-anal pores. Membrane surrounding ventri-anal shield with four pairs of setae <i>ZV1</i>, <i>ZV3</i>, <i>JV4</i> and <i>JV5</i>, and four pairs of round to oblong poroids; ventri-anal shield 113 (108–118) long, 94 (90–103) wide at anterior corners, and 89 (85–93) wide at level of anus. <i>JV5</i> 79 (75–83) long. A pair of lyrifissures near <i>JV5</i>.</p> <p> <i>Legs</i>. Legs IV with a macroseta on the basitarsus 45 (40–48). Chaetotactic formula of genu II: eight setae 2 2/ 1, 2/0 1; genu III: seven setae, 1 2/1, 2/0 1. Length of leg I: 352 (350–355), II: 269 (250–290), III: 270 (265–270), IV: 307 (300–315).</p> <p> <b> <i>Chelicera</i> (Fig. 34)</b> . Fixed digit 30 long with three teeth; and movable digit 28 long with one tooth. Pilus dentilis not visible.</p> <p> <b> <i>Spermatheca</i> (Fig. 35)</b> . Saccular shaped (Denmark <i>et al</i>., 1999), with a cervix elongate 18 (16–20) long and 8 wide, with a neck between atrium and calyx.</p> <p> <b>Etymology</b>. The name “ mazarii ” refers to the locality where the new species was found.</p> <p> <b>Description of the adult male</b> (n = 2) (Figs 36–38)</p> <p> <b> <i>Dorsum</i> (Fig. 36)</b> . Dorsal shield 265, 280 long and 200, 205 wide, with five solenostomes (<i>gd2</i>, <i>gd4</i>, <i>gd6</i>, <i>gd8</i> and <i>gd9</i>). The dorsal shield bears 18 pairs of dorsal setae and 2 pairs of sub-lateral setae: <i>j 1</i> 23, 25; <i>j3</i> 33, 35; <i>j4</i> 20; <i>j 5</i> 20, 22; <i>j 6</i> 25, 28; <i>J2</i> 35; <i>J5</i> 8; <i>z2</i> 23; <i>z 3</i> 25, 28; <i>z 4</i> 25, 30; <i>z 5</i> 23, 25; <i>Z4</i> 55; <i>Z5</i> 65, 68; <i>s4</i> 35; <i>s6</i> 40; <i>S2</i> 45; <i>S4</i> 33, 35; <i>r 3</i> 30, 33; <i>R1</i> 30. All setae smooth except Z5 serrated. Peritreme short, extending to <i>z2</i> (Fig. 36).</p> <p> <b> <i>Venter</i> (Fig. 37)</b> . All shields very lightly reticulated. Distances between <i> ST1 <i>–</i> ST3</i> 63, <i> ST2 <i>–</i> ST2</i> 50, <i>ST5–ST5</i> 38, 42. Ventri-anal shield with five pairs of pre-anal setae, <i>ZV1</i>, <i>JV1</i>, <i>JV2</i>, <i>JV4</i> and <i>ZV2</i>, and no pre-anal pores. Membrane surrounding ventri-anal shield with one pair of setae <i>JV5</i>; ventri-anal shield 110 long; 145, 148 wide at anterior corners and 78, 80 wide at level of anus. <i>JV5</i> 40 long. A pair of lyrifissures near <i>JV5</i>.</p> <p> <i>Legs</i>. Legs IV with three macrosetae GeIV 15, STiIV 15, basitarsus <i>ST IV</i> 35, 40. Chaetotactic formula of genu II and III similar to females.</p> <p> <b> <i>Chelicera</i> (Fig. 38)</b> . Fixed digit 15 ong, movable digit 2 long (dentition not visible, chelicera closed). Spermatodactyl lance-shaped.</p> <p> <b>Remarks</b>. This species is similar to <i>T</i>. (<i>T</i>.) <i>octogenipilus</i>, <i>T</i>. (<i>T</i>.) <i>sirikariensis</i> Kapaxidi & Papadoulis and <i>Typhlodromus</i> (<i>Typhlodromus</i>) <i>antakyaensis</i> Stathakis & Döker in bearing four solenostomes on the dorsal shield, no pores on the ventri-anal shield and eight setae on the genu II. However, dorsal setae and <i>ST IV</i> are much longer in <i>T</i>. (<i>T</i>.) <i>mazarii</i> than for those two former species (Table 5). For a great majority of setae, the difference between the new species and the others are much higher than 14 µm, proposed by Tixier (2013) to be the threshold between intra and interspecific variations for continous characters like seta lengths.</p> <p> It is interesting to note that females bear four solenostomes (absence of <i>gd4</i>) suggesting that this character is variable and may be not diagnostic as suggested for solenostome <i>gd2</i> by Tixier <i>et al</i>. (2011) for two species of the genus <i>Neoseiulus</i>.</p>Published as part of <i>Tixier, Marie-Stephane, Allam, Latifa, Douin, Martial & Kreiter, Serge, 2016, Phytoseiidae (Acari: Mesostigmata) of Morocco: new records, descriptions of five new species, re-descriptions of two species, and key for identification, pp. 501-551 in Zootaxa 4067 (5)</i> on pages 538-540, DOI: 10.11646/zootaxa.4067.5.1, <a href="http://zenodo.org/record/270636">http://zenodo.org/record/270636</a&gt

    Amblyseius andersoni Chant 1957

    No full text
    Amblyseius andersoni (Chant, 1957) Typhlodromus andersoni Chant, 1957: 296. Amblyseius andersoni.—Athias-Henriot, 1958 b: 33. Typhlodromus (Amblyseius) andersoni.—Chant, 1959: 92. Amblyseius (Amblyseius) andersoni.—Muma, 1961: 287. Typhlodromus (Typhlodromus) andersoni.—Westerboer & Bernhard, 1963: 682. Amblyseius (Multiseius) andersoni.— Denmark & Muma, 1989: 84. Amblyseius andersoni.—Moraes et al., 2004: 14; Chant & McMurtry, 2007: 75. This species is distributed world-wide but is mainly reported from Europe. It has been observed on many plants especially crops such as orchards (apple, peach, pear and citrus) and vineyards, particularly in humid areas (Chant & Hansell, 1971; Papadoulis & Emmanouel, 1991; Gambaro, 1994; Papaioannou-Souliotis et al., 1994; Nicotina, 1996; Duso & Pasini, 2003; Ragusa, 2006). Several studies focused on the biology of A. andersoni and on its ability to feed on plant pests. It is reported to feed on Panonychus ulmi (Koch), Frankliniella occidentalis (Pergande) and Aculops lycopersici (Massee) (Koveos & Broufas, 2000; Fischer & Mourrut-Salesse, 2005; Houten et al., 2005; Lorenzon et al., 2012). This species was known from Morocco on citrus (Tixier et al., 2003). With 218 specimens collected, it was one of the most abundant species. It has been observed in various locations all situated on the Atlantic Ocean coast, probably because of the high relative humidity in this region. Specimens examined: 2002, Damon Oum Er Bia river on Echium arenarium (Boraginaceae) (2 females), Lantana sp. (Verbenaceae) (9 females, 3 males), Malva sp. (Malvaceae) (4 females); 2003, near Larache on Quercus suber (Fagaceae) (15 females, 5 males), Erica arborea (Ericaceae) (20 females, 6 males), Chamaerops humilis (Arecaceae) (23 females, 6 males), Acacia dealbata (Fabaceae) (10 females, 3 males), Calycotome villosa (Fabaceae) (4 females), Asphodelus fistulosus (Xanthorrhoeaceae) (13 females), Daphne gnidium (Thymelaeaceae) (12 females), Knautia purpurea (Caprifoliaceae) (10 females), Cistus parviflorus (7 females), Cistus salveafolius (Cistaceae) (2 females), Lavandula stoechas (12 females), Mentha pulegium (Lamiaceae) (25 females, 7 males), Myrtus communis (Myrtaceae) (22 females, 5 males), Rumex bicephalophorus (Polygonaceae) (1 female), Mazari Cape on Centaurium erythraea (Gentianaceae) (2 females), Larache on Solanum sodomaceum (Solanaceae), Road to Souk El Arba on Cistus libanotis (Cistaceae) (2 females), Larache Beach on Solanum sodomaceum (Solanaceae) (3 females), Polygonum maritimum (Polygonaceae) (1 female). Previous records: Algeria, Azerbaijan, Belgium, Canada, Cyprus, Czech Republic, Denmark, England, France, Georgia, Germany, Greece, Hungary, India, Italy, Jordan, Japan, Moldova, Morocco, Poland, Portugal, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Syria, The Netherlands, Turkey, Ukraine, USA.Published as part of Tixier, Marie-Stephane, Allam, Latifa, Douin, Martial & Kreiter, Serge, 2016, Phytoseiidae (Acari: Mesostigmata) of Morocco: new records, descriptions of five new species, re-descriptions of two species, and key for identification, pp. 501-551 in Zootaxa 4067 (5) on page 507, DOI: 10.11646/zootaxa.4067.5.1, http://zenodo.org/record/27063

    Neoseiulus pseudotauricus Papadoulis, Emmanouel & Kapaxidi 2009

    No full text
    Neoseiulus pseudotauricus Papadoulis, Emmanouel & Kapaxidi, 2009 Neoseiulus pseudotauricus Papadoulis, Emmanouel & Kapaxidi, 2009: 95. This species has been recently described from Greece (Papadoulis et al., 2009). This is the first report of this species after its description. Nothing is known of its biology. Specimens examined: 2002, Algelmane Mountain Pass on Securigera securidaca (Fabaceae) (2 females), Beni Slimane on Cistus mumbyi (Cistaceae) (1 female). Previous records: Greece. Redescription of the adult female (n = 3) As the initial drawings of the description are excellent, new drawings are not presented in this paper. Dorsum. Dorsal shield 351 (330−372) long and 202 (200−205) wide, lightly reticulated all along the dorsal shield, with five solenostomes (gd 1, gd 2, gd 6, gd 8 and gd 9), 17 pairs of dorsal setae and two pairs of sub-lateral setae: j 1 22 (20−23), j 3 24 (20−27), j 4 13 (12−14), j 5 13, j 6 15, J 2 14 (12−15), J 5 8 (7−9), z 2 22 (20−23), Z 1 22 (20−23), z 4 25, z 5 11 (10−12), Z 4 39 (35−48), Z 5 65 (60−75), s 4 35 (33−40), S 2 33, S 4 23 (22−25), S 5 18 (12−22), r 3 26 (22−27), R 1 22 (20−23). All setae smooth. Peritreme extending to j 1. Venter. All shields lightly reticulated. Sternal shield with three pairs of setae and two pairs of lyrifissures (not visible in our specimen); a pair of sternal setae (ST 4) on small metasternal plates; posterior margin straight. Distances between ST 1 – ST 3 68 (63−70), ST 2 – ST 2 63 (60−65), ST 5 –ST 5 67 (65−70). Two pairs of metapodal plates 27 (25−28) long, 5 (5−6) wide for the largest and 13 (12−15) long and 2 wide for the smallest. Ventri-anal shield with three pairs of pre-anal setae JV 1, JV 2, ZV 2 and pre-anal pores present. Membrane surrounding ventrianal shield with four pairs of setae ZV 1, ZV 3, JV 4 and JV 5; ventri-anal shield 123 (115−130) long, 111 (105−115) wide at anterior corners, and 100 (95−103) wide at level of anus. JV 5 68 (66−70) long. Legs. Legs IV with three macrosetae on the genu, Sge IV 46 (43−50), tibia, Ti IV 38 (35−40) and basitarsus, ST IV 66 (57−70). Chaetotactic formula of genu II: seven setae, 2 2 / 1, 2 /0 1; genu III: seven setae, 1 2 / 1, 2 /0 1. Length of leg I: 325, II: 275 (180−210), III: 280 (185−195), IV: 350. Chelicera. Fixed digit 30 long with one tooth; and movable digit 32 long with two teeth. Spermatheca. With an elongated cervix, 38 long, atrium inserted at the basis of the cervix.Published as part of Tixier, Marie-Stephane, Allam, Latifa, Douin, Martial & Kreiter, Serge, 2016, Phytoseiidae (Acari: Mesostigmata) of Morocco: new records, descriptions of five new species, re-descriptions of two species, and key for identification, pp. 501-551 in Zootaxa 4067 (5) on pages 513-514, DOI: 10.11646/zootaxa.4067.5.1, http://zenodo.org/record/27063

    Paraseiulus minutus Athias-Henriot 1978

    No full text
    Paraseiulus minutus Athias-Henriot, 1978 Paraseiulus (Paraseiulus) minutus Athias-Henriot, 1978: 700. Typhlodromus minutus.—Chant & Yoshida-Shaul, 1982: 3025. Paraseiulus minutus.—Moraes et al., 2004: 299. Nothing is known on the biology of this species. This is the first report from North Africa. Specimens examined: 2002, Agourai on Fraxinus sp. (Oleaceae) (11 females, 1 male), Populus sp. (Salicaceae) (2 females), Morus sp. (Moraceae) (2 females), Vitis vinifera (Vitaceae) (1 female). Previous records: France.Published as part of Tixier, Marie-Stephane, Allam, Latifa, Douin, Martial & Kreiter, Serge, 2016, Phytoseiidae (Acari: Mesostigmata) of Morocco: new records, descriptions of five new species, re-descriptions of two species, and key for identification, pp. 501-551 in Zootaxa 4067 (5) on pages 517-518, DOI: 10.11646/zootaxa.4067.5.1, http://zenodo.org/record/27063

    Neoseiulus barkeri Hughes 1948

    No full text
    <i>Neoseiulus barkeri</i> Hughes, 1948 <p> <i>Neoseiulus barkeri</i> Hughes, 1948: 142; 1976: 343.</p> <p> <i>Typhlodromus barkeri</i>.—Nesbitt, 1951: 35; Chant, 1959: 61. <i>Amblyseius barkeri</i>.—Athias-Henriot, 1961: 440.</p> <p> <i>Amblyseius mckenziei</i>.—Schuster & Pritchard, 1963: 268.</p> <p> <i>Neoseiulus barkeri</i>.—Moraes <i>et al</i>., 2004: 104; Chant & McMurtry, 2007: 22.</p> <p> This species was originally described from England is distributed world-wide. Many publications deal with its biology. It is a well-known predator of <i>T</i>. <i>urticae</i> and also of thrips, and is released in greenhouses (strawberry, cucumber, eggplant) to control them. Kreiter <i>et al</i>. (2007) cited this species from the Moroccan fauna referring to the specimens reported here.</p> <p> <b>Specimens examined: 2003, Road to Souk El Arba</b> on <i>Nerium oleander</i> (Apocynaceae) (1 female), <b>Larache</b> on <i>Plantago maritima</i> (Plantaginaceae) (8 females, 3 males).</p> <p> <b>Previous records:</b> Algeria, Argentina, Australia, Benin, Brazil, Burundi, Canary Islands, Cape Verde, Chile (Ragusa & Vargas, 2002), China, Cyprus, Egypt, England, Finland, France, Germany, Georgia, Ghana, Greece, Guinea, Hawai, India, Iran, Israel, Italy, Ivory Coast, Japan, Jordan, Kenya, Latvia, Madagascar, Malawi, Morocco (Kreiter <i>et al</i>., 2007), Mozambique, Nigeria, Norway, Oman, Portugal, Reunion Island, Russia, Saudi Arabia, Senegal, South Africa, South Korea, Spain, Sweden, Syria, Taiwan, Tahiti, Thailand, The Netherlands, Tunisia, Turkey, Ukraine, West Bank, Yemen.</p>Published as part of <i>Tixier, Marie-Stephane, Allam, Latifa, Douin, Martial & Kreiter, Serge, 2016, Phytoseiidae (Acari: Mesostigmata) of Morocco: new records, descriptions of five new species, re-descriptions of two species, and key for identification, pp. 501-551 in Zootaxa 4067 (5)</i> on page 512, DOI: 10.11646/zootaxa.4067.5.1, <a href="http://zenodo.org/record/270636">http://zenodo.org/record/270636</a&gt
    corecore