94 research outputs found

    The balance of Polo-like kinase 1 in tumorigenesis

    Get PDF
    Polo-like kinase 1 (Plk1) belongs to a family of conserved serine/threonine kinases with a polo-box domain, which have similar but non-overlapping functions in the cell cycle progression. Plk1 plays a key role to ensure the normal mitosis. Interestingly, overexpression of Plk1 is associated with tumor development and could serve as a prognostic marker for many cancers. Due to Plk1 overexpression, several Plk1 inhibitors have been developed and tested for the cancer treatment. However, in a recent study, it has been suggested that down-regulation of Plk1 could also induce aneuploidy and tumor formation in vivo. Therefore, a normal level of Plk1 is important for mitosis. And caution should be taken when Plk1 inhibitors are used in the clinical trial and their side effects including tumorigenesis should be carefully evaluated

    Childhood abuse v. neglect and risk for major psychiatric disorders

    Get PDF
    Background. Childhood maltreatment (CM) is a strong risk factor for psychiatric disorders but serves in its current definitions as an umbrella for various fundamentally different childhood experiences. As first step toward a more refined analysis of the impact of CM, our objective is to revisit the relation of abuse and neglect, major subtypes of CM, with symptoms across disorders.Methods. Three longitudinal studies of major depressive disorder (MDD, N = 1240), bipolar disorder (BD, N = 1339), and schizophrenia (SCZ, N = 577), each including controls (N = 881), were analyzed. Multivariate regression models were used to examine the relation between exposure to abuse, neglect, or their combination to the odds for MDD, BD, SCZ, and symptoms across disorders. Bidirectional Mendelian randomization (MR) was used to probe causality, using genetic instruments of abuse and neglect derived from UK Biobank data (N = 143 473).Results. Abuse was the stronger risk factor for SCZ (OR 3.51, 95% CI 2.17-5.67) and neglect for BD (OR 2.69, 95% CI 2.09-3.46). Combined CM was related to increased risk exceeding additive effects of abuse and neglect for MDD (RERI = 1.4) and BD (RERI = 1.1). Across disorders, abuse was associated with hallucinations (OR 2.16, 95% CI 1.55-3.01) and suicide attempts (OR 2.16, 95% CI 1.55-3.01) whereas neglect was associated with agitation (OR 1.24, 95% CI 1.02-1.51) and reduced need for sleep (OR 1.64, 95% CI 1.08-2.48). MR analyses were consistent with a bidirectional causal effect of abuse with SCZ (IVWforward = 0.13, 95% CI 0.01-0.24).Conclusions. Childhood abuse and neglect are associated with different risks to psychiatric symptoms and disorders. Unraveling the origin of these differences may advance understanding of disease etiology and ultimately facilitate development of improved personalized treatment strategies

    Transcription factor site dependencies in human, mouse and rat genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is known that transcription factors frequently act together to regulate gene expression in eukaryotes. In this paper we describe a computational analysis of transcription factor site dependencies in human, mouse and rat genomes.</p> <p>Results</p> <p>Our approach for quantifying tendencies of transcription factor binding sites to co-occur is based on a binding site scoring function which incorporates dependencies between positions, the use of information about the structural class of each transcription factor (major/minor groove binder), and also considered the possible implications of varying GC content of the sequences. Significant tendencies (dependencies) have been detected by non-parametric statistical methodology (permutation tests). Evaluation of obtained results has been performed in several ways: reports from literature (many of the significant dependencies between transcription factors have previously been confirmed experimentally); dependencies between transcription factors are not biased due to similarities in their DNA-binding sites; the number of dependent transcription factors that belong to the same functional and structural class is significantly higher than would be expected by chance; supporting evidence from GO clustering of targeting genes. Based on dependencies between two transcription factor binding sites (second-order dependencies), it is possible to construct higher-order dependencies (networks). Moreover results about transcription factor binding sites dependencies can be used for prediction of groups of dependent transcription factors on a given promoter sequence. Our results, as well as a scanning tool for predicting groups of dependent transcription factors binding sites are available on the Internet.</p> <p>Conclusion</p> <p>We show that the computational analysis of transcription factor site dependencies is a valuable complement to experimental approaches for discovering transcription regulatory interactions and networks. Scanning promoter sequences with dependent groups of transcription factor binding sites improve the quality of transcription factor predictions.</p

    A Novel Secretion Pathway of Salmonella enterica Acts as an Antivirulence Modulator during Salmonellosis

    Get PDF
    Salmonella spp. are Gram-negative enteropathogenic bacteria that infect a variety of vertebrate hosts. Like any other living organism, protein secretion is a fundamental process essential for various aspects of Salmonella biology. Herein we report the identification and characterization of a horizontally acquired, autonomous and previously unreported secretion pathway. In Salmonella enterica serovar Typhimurium, this novel secretion pathway is encoded by STM1669 and STM1668, designated zirT and zirS, respectively. We show that ZirT is localized to the bacterial outer membrane, expected to adopt a compact β-barrel conformation, and functions as a translocator for ZirS. ZirS is an exoprotein, which is secreted into the extracellular environment in a ZirT-dependent manner. The ZirTS secretion pathway was found to share several important features with two-partner secretion (TPS) systems and members of the intimin/invasin family of adhesions. We show that zirTS expression is affected by zinc; and that in vivo, induction of zirT occurs distinctively in Salmonella colonizing the small intestine, but not in systemic sites. Additionally, strong expression of zirT takes place in Salmonella shed in fecal pellets during acute and persistent infections of mice. Inactivation of ZirTS results in a hypervirulence phenotype of Salmonella during oral infection of mice. Cumulatively, these results indicate that the ZirTS pathway plays a unique role as an antivirulence modulator during systemic disease and is involved in fine-tuning a host–pathogen balance during salmonellosis

    Molecular pathway profiling of T lymphocyte signal transduction pathways; Th1 and Th2 genomic fingerprints are defined by TCR and CD28-mediated signaling

    Get PDF
    Contains fulltext : 108719.pdf (publisher's version ) (Open Access)BACKGROUND: T lymphocytes are orchestrators of adaptive immunity. Naive T cells may differentiate into Th1, Th2, Th17 or iTreg phenotypes, depending on environmental co-stimulatory signals. To identify genes and pathways involved in differentiation of Jurkat T cells towards Th1 and Th2 subtypes we performed comprehensive transcriptome analyses of Jurkat T cells stimulated with various stimuli and pathway inhibitors. Results from these experiments were validated in a human experimental setting using whole blood and purified CD4+ Tcells. RESULTS: Calcium-dependent activation of T cells using CD3/CD28 and PMA/CD3 stimulation induced a Th1 expression profile reflected by increased expression of T-bet, RUNX3, IL-2, and IFNgamma, whereas calcium-independent activation via PMA/CD28 induced a Th2 expression profile which included GATA3, RXRA, CCL1 and Itk. Knock down with siRNA and gene expression profiling in the presence of selective kinase inhibitors showed that proximal kinases Lck and PKCtheta are crucial signaling hubs during T helper cell activation, revealing a clear role for Lck in Th1 development and for PKCtheta in both Th1 and Th2 development. Medial signaling via MAPkinases appeared to be less important in these pathways, since specific inhibitors of these kinases displayed a minor effect on gene expression. Translation towards a primary, whole blood setting and purified human CD4+ T cells revealed that PMA/CD3 stimulation induced a more pronounced Th1 specific, Lck and PKCtheta dependent IFNgamma production, whereas PMA/CD28 induced Th2 specific IL-5 and IL-13 production, independent of Lck activation. PMA/CD3-mediated skewing towards a Th1 phenotype was also reflected in mRNA expression of the master transcription factor Tbet, whereas PMA/CD28-mediated stimulation enhanced GATA3 mRNA expression in primary human CD4+ Tcells. CONCLUSIONS: This study identifies stimulatory pathways and gene expression profiles for in vitro skewing of T helper cell activation. PMA/CD3 stimulation enhances a Th1-like response in an Lck and PKCtheta dependent fashion, whereas PMA/CD28 stimulation results in a Th2-like phenotype independent of the proximal TCR-tyrosine kinase Lck. This approach offers a robust and fast translational in vitro system for skewed T helper cell responses in Jurkat T cells, primary human CD4+ Tcells and in a more complex matrix such as human whole blood

    Several Distinct Polycomb Complexes Regulate and Co-Localize on the INK4a Tumor Suppressor Locus

    Get PDF
    Misexpression of Polycomb repressive complex 1 (PRC1) components in human cells profoundly influences the onset of cellular senescence by modulating transcription of the INK4a tumor suppressor gene. Using tandem affinity purification, we find that CBX7 and CBX8, two Polycomb (Pc) homologs that repress INK4a, both participate in PRC1-like complexes with at least two Posterior sex combs (Psc) proteins, MEL18 and BMI1. Each complex contains a single representative of the Pc and Psc families. In primary human fibroblasts, CBX7, CBX8, MEL18 and BMI1 are present at the INK4a locus and shRNA-mediated knockdown of any one of these components results in de-repression of INK4a and proliferative arrest. Sequential chromatin immunoprecipitation (ChIP) reveals that CBX7 and CBX8 bind simultaneously to the same region of chromatin and knockdown of one of the Pc or Psc proteins results in release of the other, suggesting that the binding of PRC1 complexes is interdependent. Our findings provide the first evidence that a single gene can be regulated by several distinct PRC1 complexes and raise important questions about their configuration and relative functions
    corecore