178 research outputs found

    Unusual Nernst effect suggestive of time-reversal violation in the striped cuprate La2x_{2-x}Bax_xCuO4_4

    Full text link
    The striped cuprate La2x_{2-x}Bax_xCuO4_4 (x=18)x=\frac18) undergoes several transitions below the charge-ordering temperature TcoT_{co} = 54 K. From Nernst experiments, we find that, below TcoT_{co}, there exists a large, anomalous Nernst signal eN,even(H,T)e_{N,even}(H,T) that is symmetric in field HH, and remains finite as H0H\to 0. The time-reversal violating signal suggests that, below TcoT_{co}, vortices of one sign are spontaneously created to relieve interlayer phase frustration.Comment: 5 pages, 4 figure

    Spin-triplet Supercurrent through Inhomogeneous Ferromagnetic Trilayers

    Full text link
    Motivated by a recent experiment [J. W. A. Robinson, J. D. S. Witt and M. G. Blamire, Science, \textbf{329}, 5987 (2010)], we here study the possibility of establishing a long-range spin-triplet supercurrent through an inhomogeneous ferromagnetic region consisting of a Ho\midCo\midHo trilayer sandwiched between two conventional s-wave superconductors. We utilize a full numerical solution in the diffusive regime of transport and study the behavior of the supercurrent for various experimentally relevant configurations of the ferromagnetic trilayer. We obtain qualitatively very good agreement with experimental data regarding the behavior of the supercurrent as a function of the width of the Co-layer, LCoL_\text{Co}. Moreover, we find a synthesis of 0-π\pi oscillations with superimposed rapid oscillations when varying the width of the Ho-layer which pertain specifically to the spiral magnetization texture in Ho. We are not able to reproduce the anomalous peaks in the supercurrent observed experimentally in this regime, but note that the results obtained are quite sensitive to the exact magnetization profile in the Ho-layers, which could be the reason for the discrepancy between our model and the experimental reported data for this particular aspect. We also investigate the supercurrent in a system where the intrinsically inhomogeneous Ho ferromagnets are replaced with domain-wall ferromagnets, and find similar behavior as in the Ho\midCo\midHo case. Furthermore, we propose a novel type of magnetic Josephson junction including only a domain-wall ferromagnet and a homogeneous ferromagnetic layer, which in addition to simplicity regarding the magnetization profile also offers a tunable long-range spin-triplet supercurrent. Finally, we discuss some experimental aspects of our findings.Comment: 7 pages, 7 figures. Submitted to Physical Revie

    Room-temperature magnetic topological semimetal state in half-metallic Heusler Co2_2TiX (X=Si, Ge, or Sn)

    Full text link
    Topological semimetals (TSMs) including Weyl semimetals and nodal-line semimetals are expected to open the next frontier of condensed matter and materials science. Although the first inversion breaking Weyl semimetal was recently discovered in TaAs, its magnetic counterparts, i.e., the time-reversal breaking Weyl and nodal line semimetals, remain elusive. They are predicted to exhibit exotic properties distinct from the inversion breaking TSMs including TaAs. In this paper, we identify the magnetic topological semimetal state in the ferromagnetic half-metal compounds Co2_2TiX (X=Si, Ge, or Sn) with Curie temperatures higher than 350 K. Our first-principles band structure calculations show that, in the absence of spin-orbit coupling, Co2_2TiX features three topological nodal lines. The inclusion of spin-orbit coupling gives rise to Weyl nodes, whose momentum space locations can be controlled as a function of the magnetization direction. Our results not only open the door for the experimental realization of topological semimetal states in magnetic materials at room temperatures, but also suggest potential applications such as unusual anomalous Hall effects in engineered monolayers of the Co2_2TiX compounds at high temperatures.Comment: 16 pages, 4 figures, and 1 tabl
    corecore