17 research outputs found

    Aneurysmal Subarachnoid Hemorrhage

    Get PDF
    Aneurysmal subarachnoid hemorrhage (SAH) is a devastating neurological syndrome, which occurs at a rate of 3–25 per 100,000 population. Smoking and hypertension are the most important risk factors of subarachnoid hemorrhage. Rupture of cerebral aneurysm leads to rapid spread of blood into cerebrospinal fluid and subsequently leads to sudden increase of intracranial pressure and severe headache. Subarachnoid hemorrhage is associated with neurological (such as re‐bleeding and vasospasm) and systemic (such as myocardial injury and hyponatremia) complications that are causes of high mortality and morbidity. Although patients with poor‐grade subarachnoid hemorrhage are at higher risk of neurological and systemic complications, the early and aggressive management of this group of patient has decreased overall mortality by 17% in last 40 years. Early aneurysm repair, close monitoring in dedicated neurological intensive care unit, prevention, and aggressive management of medical and neurological complications are the most important strategies to improve outcome

    Enhanced Energy Storage Performance by Relaxor Highly Entropic (Ba0.2Na0.2K0.2La0.2Bi0.2)TiO3 and (Ba0.2Na0.2K0.2Mg0.2Bi0.2)TiO3 Ferroelectric Ceramics

    No full text
    Dielectric ceramic capacitors have attained considerable attention due to their energy storage performance in the field of advanced high/pulsed power capacitors. For such a purpose, configurationally disordered composite material engineering, with the substitution of suitable oxide cations at a single lattice site have demonstrated a strong dielectric relaxor phase with the ability to show high performance capacitive properties. Herein, two prominent high-entropy ceramics systems (Ba0.2Na0.2K0.2A0.2Bi0.2)TiO3, (with A = La and Mg) were fabricated to evaluate their structural, ferroelectric and dielectric properties. XRD patterns and Rietveld refinement of the XRD analysis confirmed the cubic structure Pm3¯m space group of the ceramics. The relative dielectric analysis of Ba0.2Na0.2K0.2La0.2Bi0.2TiO3 (BNKLBT) and Ba0.2Na0.2K0.2Mg0.2Bi0.2TiO3 (BNKMBT) ceramics were demonstrated with relaxor ferroelectric behavior having diffusion coefficients of 1.617 and 1.753, respectively. Moreover, BNKLBT and BNLMBT ceramics presented better stored energy density (1.062 J/cm3 and 0.8855 J/cm3, respectively) and high energy conversion efficiency (80.27% and 82.38%, respectively) at an electric field of 100 kV/cm. The results clearly demonstrate that such high-entropy configured ceramics have the potential to be used in efficient energy storage devices

    Actual and Predicted Evapotranspiration Along with Groundwater Contribution for Wheat Crop

    Get PDF
    This experiment aimed to determine the crop evapotranspiration (ETc), groundwater input in total water used by wheat crop, and to simulate the CROPWAT model to envisage the crop evapotranspiration rate. To estimate on-field ETc and groundwater contribution the combining lysimeter technique was used. The water levels below the soil surface were kept at 1.60, 2.20, and 2.80 m and each water table depth was replicated three times. The experiment was conducted under silt loam (SL) and silty-clay loam (SCL) soil conditions. The climatic parameters and water balance components were recorded accordingly. The on-field ETc was compared with the predicted ETc by CROPWAT model. Under SL soil, the observed ETc was 442, 427, and 401 mm at the water table depth of 1.60, 2.20, and 2.80 m, respectively. The recorded ETc under SCL soil was 419, 402, and 389 mm at the same water table depths, respectively. The ETc reduced with an increase in water level below the surface. The groundwater contribution at 1.60, 2.20 and 2.80 m depth of water level under SL and SCL soil was observed as 50, 41, and 30 % and 43, 34, and 24 %, respectively. The predicted ETc by CROPWAT model for SL and SCL soil conditions was 428.8 and 410.7 mm, respectively. The projected ETc is likely equal to the average ETc observed under lysimeter experiment. Thus, the use of CROPWAT model is recommended to overcome waterlogging and salinity problems and to conserve water resources

    Enhanced Energy Storage Performance by Relaxor Highly Entropic (Ba<sub>0.2</sub>Na<sub>0.2</sub>K<sub>0.2</sub>La<sub>0.2</sub>Bi<sub>0.2</sub>)TiO<sub>3</sub> and (Ba<sub>0.2</sub>Na<sub>0.2</sub>K<sub>0.2</sub>Mg<sub>0.2</sub>Bi<sub>0.2</sub>)TiO<sub>3</sub> Ferroelectric Ceramics

    No full text
    Dielectric ceramic capacitors have attained considerable attention due to their energy storage performance in the field of advanced high/pulsed power capacitors. For such a purpose, configurationally disordered composite material engineering, with the substitution of suitable oxide cations at a single lattice site have demonstrated a strong dielectric relaxor phase with the ability to show high performance capacitive properties. Herein, two prominent high-entropy ceramics systems (Ba0.2Na0.2K0.2A0.2Bi0.2)TiO3, (with A = La and Mg) were fabricated to evaluate their structural, ferroelectric and dielectric properties. XRD patterns and Rietveld refinement of the XRD analysis confirmed the cubic structure Pm3¯m space group of the ceramics. The relative dielectric analysis of Ba0.2Na0.2K0.2La0.2Bi0.2TiO3 (BNKLBT) and Ba0.2Na0.2K0.2Mg0.2Bi0.2TiO3 (BNKMBT) ceramics were demonstrated with relaxor ferroelectric behavior having diffusion coefficients of 1.617 and 1.753, respectively. Moreover, BNKLBT and BNLMBT ceramics presented better stored energy density (1.062 J/cm3 and 0.8855 J/cm3, respectively) and high energy conversion efficiency (80.27% and 82.38%, respectively) at an electric field of 100 kV/cm. The results clearly demonstrate that such high-entropy configured ceramics have the potential to be used in efficient energy storage devices

    The Swirl Sign and Its Relationship to Patient Outcomes in Extradural Hematomas: A Retrospective Investigation

    No full text
    Introduction:" Swirl sign" is a relatively uncommon sign, seen on non-contrast CT scans in patients with head trauma who develop extradural hematoma the prognostic significance of which is controversial. This research aims to evaluate the predictive significance of the swirl sign in patients with an extradural hemorrhage. Material and Methods:  It was a retrospective study and included 145 patients, with traumatic brain injury, who underwent surgical treatment at the Department of Neurosurgery Holy Family Hospital, Rawalpindi, Pakistan, between January 2022 and January 2023 and had traumatic EDH identified by computed tomography scan. Patients who did not undergo surgery or had combined or open craniocerebral injuries were eliminated. A Glasgow Outcome Scale score was used to evaluate outcomes after three months of traumatic brain injury. Mann-Whitney U test, the Chi-square test, and multivariate logistic regression were applied for descriptive and inferential analysis. Results:  A total of 145 cases were evaluated, 19 (13.1%) demonstrated the sign on a CT scan of the brain. Analysis displayed a notable association between the incidence of the swirl sign and pupillary size, preoperative Glasgow Coma Scale score, time between trauma and first CT scan, and volume of hematoma measured intraoperatively. Patients displaying the swirl sign showed an increased mortality rate (25%) compared to patients without the swirl sign (5%) and worse outcomes at 3 months. Conclusion:  The presence of the swirl sign on the CT scan had a significant association with worse outcomes. Early detection and prompt surgical evacuation are important for patients with this sign

    Simulation of steam gasification of halophyte biomass for syngas production using Aspen Plus

    No full text
    Exploring the new non-edible source of biomass for green energy production becomes extremely important with the increase in global energy crises. The primary objective of this work is to evaluate the potential of halophyte (Phragmites australis), a salt-tolerant plant for syngas production, and provide it as a promising alternative biofuel for sustainable energy production. This study is based on the steady-state chemical equilibrium model simulation of steam gasification of halophyte biomass (Phragmites australis) with CO2 capture through sorbent (CaO) using ASPEN PLUS®. The simulation model works on the principle of Gibbs free energy minimization. The operating parameters such as temperature, steam to biomass ratio (STBR), and CaO/biomass ratio have been varied over a wide range. The effect of high heating value (HHV), low heating value (LHV), H2/CO, carbon conversion efficiency (CCE), and cold gas efficiency (CGE) has been investigated for syngas production. The results showed that with the increase of temperature from 600 to 700 °C, H2 concentration increased from 69.52 to 75.16 vol %, respectively. A reduction in CO2 concentration from 16.91 to 5.4 vol % is observed by increasing the CaO/biomass ratio from 0.1 to 0.9. It has been observed that the product gas hydrogen yield rises with increased temperature. At an optimum temperature of 700 °C with an STBR of 0.4 and CaO/biomass ratio of 1.42, the maximum hydrogen yield is 75.16 vol % with a minimum CO2 content of 5.4 vol %. At these optimum conditions, the values of HHV, LHV, CCE, and CGE are 13.32 MJ/Nm3, 15.20 MJ/Nm3, 42.91%, and 78.63%, respectively. In addition, the developed model is validated against published literature data, and the results show good agreement with the published data. The relative error for hydrogen and carbon monoxide is within limits, i.e., 3.02% and 0.67% at 700 °C, 5.30% and 3.61% at 600 °C, and 10.62% and 35.03% at 500 °C, respectively, which validates the proposed model. It can be concluded that the sorption-based biomass gasification process is a promising technique for greener syngas production.Scopu

    Single- and Multilayered Perovskite Thin Films for Photovoltaic Applications

    No full text
    Organic&ndash;inorganic lead halide perovskites materials have emerged as an innovative candidate in the development of optoelectronic and photovoltaic devices, due to their appealing electrical and optical properties. Herein, mix halide single-layer (~95 nm) and multilayer (average layer ~87 nm) CH3NH3PbIBr2 thinfilms were grown by a one-step spin coating method. In this study, both films maintained their perovskite structure along with the appearance of a pseudo-cubic phase of (200) at 30.16&deg;. Single-layer and multilayer CH3NH3PbIBr2 thinfilms displayed leaky ferroelectric behavior, and multilayered thinfilm showed a leakage current of ~5.06 &times; 10&minus;6 A and resistivity of ~1.60 &times; 106 &Omega;.cm for the applied electric field of 50 kV/cm. However, optical analysis revealed that the absorption peak of multilayered perovskite is sharper than a single layer in the visible region rather than infrared (IR) and near-infrared region (NIR). The band gap of the thinfilms was measured by Tauc plot, giving the values of 2.07 eV and 1.81 eV for single-layer and multilayer thinfilms, respectively. The structural analysis has also been performed by Fourier transform infrared spectroscopy (FTIR). Moreover, the fabricated CH3NH3PbIBr2 as an absorber layer for photoelectric cell demonstrated a power conversion efficiency of 7.87% and fill factor of 72%. Reported electrical, optical and photoelectric efficiency-based results suggest that engineered samples are suitable candidates for utilization in optoelectronic and photovoltaic devices

    Manipulating the Crystallization Kinetics by Additive Engineering toward High‐Efficient Photovoltaic Performance

    No full text
    Additive processing is proven to be an effective method to improve the efficiency and stability of perovskite solar cells; however, its intrinsic role in directing the crystallization pathway and thus morphology formation remains unknown. In situ grazing-incidence wide-angle x-ray scattering (GIWAXS) is applied to study the function of a 1,8-diiodooctane (DIO) additive in manipulating the crystallization behavior of perovskite thin films. It is seen that the DIO additive could induce multi-stage intermediate crystallization phases and increases the activation energy for nucleation and growth, which postpones the perovskite phase transformation time and broadens the transition zone. The elongated crystallization process affords improved perovskite thin film crystallinity and reduces defect density, which enables a longer carrier diffusion length. As a result, improved device efficiency, moisture, and thermal stability can be achieved. The current study provides a new prospective in understanding the additive function in perovskite thin film morphology control from fundamental parameters, indicating the importance of minor processing conditions in global property management toward high device performance
    corecore