21 research outputs found

    Impact of Genotype, Serum Bile Acids, and Surgical Biliary Diversion on Native Liver Survival in FIC1 Deficiency

    No full text
    BACKGROUND AND AIMS: Mutations in ATPase phospholipid transporting 8B1 (ATP8B1) can lead to familial intrahepatic cholestasis type 1 (FIC1) deficiency, or progressive familial intrahepatic cholestasis type 1. The rarity of FIC1 deficiency has largely prevented a detailed analysis of its natural history, effects of predicted protein truncating mutations (PPTMs), and possible associations of serum bile acid (sBA) concentrations and surgical biliary diversion (SBD) with long-term outcome. We aimed to provide insights by using the largest genetically defined cohort of patients with FIC1 deficiency to date. APPROACH AND RESULTS: This multicenter, combined retrospective and prospective study included 130 patients with compound heterozygous or homozygous predicted pathogenic ATP8B1 variants. Patients were categorized according to the number of PPTMs (i.e., splice site, frameshift due to deletion or insertion, nonsense, duplication), FIC1-A (n = 67; no PPTMs), FIC1-B (n = 29; one PPTM), or FIC1-C (n = 34; two PPTMs). Survival analysis showed an overall native liver survival (NLS) of 44% at age 18 years. NLS was comparable among FIC1-A, FIC1-B, and FIC1-C (% NLS at age 10 years: 67%, 41%, and 59%, respectively; P = 0.12), despite FIC1-C undergoing SBD less often (% SBD at age 10 years: 65%, 57%, and 45%, respectively; P = 0.03). sBAs at presentation were negatively associated with NLS (NLS at age 10 years, sBAs = 194 mu mol/L: 15%; P = 0.03). SBD decreased sBAs (230 [125-282] to 74 [11-177] mu mol/L; P = 0.005). SBD (HR 0.55, 95% CI 0.28-1.03, P = 0.06) and post-SBD sBA concentrations < 65 mu mol/L (P = 0.05) tended to be associated with improved NLS. CONCLUSIONS: Less than half of patients with FIC1 deficiency reach adulthood with native liver. The number of PPTMs did not associate with the natural history or prognosis of FIC1 deficiency. sBA concentrations at initial presentation and after SBD provide limited prognostic information on long-term NLS

    Genotype correlates with the natural history of severe bile salt export pump deficiency

    Get PDF
    Background & aims: Mutations in ABCB11 can cause deficiency of the bile salt export pump (BSEP), leading to cholestasis and end-stage liver disease. Owing to the rarity of the disease, the associations between genotype and natural history, or outcomes following surgical biliary diversion (SBD), remain elusive. We aimed to determine these associations by assembling the largest genetically defined cohort of patients with severe BSEP deficiency to date. Methods: This multicentre, retrospective cohort study included 264 patients with homozygous or compound heterozygous pathological ABCB11 mutations. Patients were categorized according to genotypic severity (BSEP1, BSEP2, BSEP3). The predicted residual BSEP transport function decreased with each category. Results: Genotype severity was strongly associated with native liver survival (NLS, BSEP1 median 20.4 years; BSEP2, 7.0 years; BSEP3, 3.5 years; p <0.001). At 15 years of age, the proportion of patients with hepatocellular carcinoma was 4% in BSEP1, 7% in BSEP2 and 34% in BSEP3 (p = 0.001). SBD was associated with significantly increased NLS (hazard ratio 0.50; 95% CI 0.27-0.94: p = 0.03) in BSEP1 and BSEP2. A serum bile acid concentration below 102 μmol/L or a decrease of at least 75%, each shortly after SBD, reliably predicted NLS of ≥15 years following SBD (each p <0.001). Conclusions: The genotype of severe BSEP deficiency strongly predicts long-term NLS, the risk of developing hepatocellular carcinoma, and the chance that SBD will increase NLS. Serum bile acid parameters shortly after SBD can predict long-term NLS. Lay summary: This study presents data from the largest genetically defined cohort of patients with severe bile salt export pump deficiency to date. The genotype of patients with severe bile salt export pump deficiency is associated with clinical outcomes and the success of therapeutic interventions. Therefore, genotypic data should be used to guide personalized clinical care throughout childhood and adulthood in patients with this disease
    corecore