9,284 research outputs found

    A Unified Mechanism on the Formation of Acenes, Helicenes, and Phenacenes in the Gas Phase.

    Get PDF
    A unified low-temperature reaction mechanism on the formation of acenes, phenacenes, and helicenes-polycyclic aromatic hydrocarbons (PAHs) that are distinct via the linear, zigzag, and ortho-condensed arrangements of fused benzene rings-is revealed. This mechanism is mediated through a barrierless, vinylacetylene mediated gas-phase chemistry utilizing tetracene, [4]phenacene, and [4]helicene as benchmarks contesting established ideas that molecular mass growth processes to PAHs transpire at elevated temperatures. This mechanism opens up an isomer-selective route to aromatic structures involving submerged reaction barriers, resonantly stabilized free-radical intermediates, and systematic ring annulation potentially yielding molecular wires along with racemic mixtures of helicenes in deep space. Connecting helicene templates to the Origins of Life ultimately changes our hypothesis on interstellar carbon chemistry

    Structure of the RNA-dependent RNA polymerase of poliovirus

    Get PDF
    AbstractBackground: The central player in the replication of RNA viruses is the viral RNA-dependent RNA polymerase. The 53 kDa poliovirus polymerase, together with other viral and possibly host proteins, carries out viral RNA replication in the host cell cytoplasm. RNA-dependent RNA polymerases comprise a distinct category of polymerases that have limited sequence similarity to reverse transcriptases (RNA-dependent DNA polymerases) and perhaps also to DNA-dependent polymerases. Previously reported structures of RNA-dependent DNA polymerases, DNA-dependent DNA polymerases and a DNA-dependent RNA polymerase show that structural and evolutionary relationships exist between the different polymerase categories.Results: We have determined the structure of the RNA-dependent RNA polymerase of poliovirus at 2.6 Å resolution by X-ray crystallography. It has the same overall shape as other polymerases, commonly described by analogy to a right hand. The structures of the ‘fingers’ and ‘thumb’ subdomains of poliovirus polymerase differ from those of other polymerases, but the palm subdomain contains a core structure very similar to that of other polymerases. This conserved core structure is composed of four of the amino acid sequence motifs described for RNA-dependent polymerases. Structure-based alignments of these motifs has enabled us to modify and extend previous sequence and structural alignments so as to relate sequence conservation to function. Extensive regions of polymerase–polymerase interactions observed in the crystals suggest an unusual higher order structure that we believe is important for polymerase function.Conclusions: As a first example of a structure of an RNA-dependent RNA polymerase, the poliovirus polymerase structure provides for a better understanding of polymerase structure, function and evolution. In addition, it has yielded insights into an unusual higher order structure that may be critical for poliovirus polymerase function

    Benign Overfitting in Linear Regression

    Full text link
    The phenomenon of benign overfitting is one of the key mysteries uncovered by deep learning methodology: deep neural networks seem to predict well, even with a perfect fit to noisy training data. Motivated by this phenomenon, we consider when a perfect fit to training data in linear regression is compatible with accurate prediction. We give a characterization of linear regression problems for which the minimum norm interpolating prediction rule has near-optimal prediction accuracy. The characterization is in terms of two notions of the effective rank of the data covariance. It shows that overparameterization is essential for benign overfitting in this setting: the number of directions in parameter space that are unimportant for prediction must significantly exceed the sample size. By studying examples of data covariance properties that this characterization shows are required for benign overfitting, we find an important role for finite-dimensional data: the accuracy of the minimum norm interpolating prediction rule approaches the best possible accuracy for a much narrower range of properties of the data distribution when the data lies in an infinite dimensional space versus when the data lies in a finite dimensional space whose dimension grows faster than the sample size

    Interleukin-6 blockade for prophylaxis and management of immune-related adverse events in cancer immunotherapy

    Full text link
    Background Immune checkpoint inhibitors (ICIs) have activity across many tumor types, but activation of the immune system may also lead to significant, often steroid-refractory immune-related adverse events (irAEs). We sought to determine the activity of tocilizumab, an anti-interleukin-6 receptor monoclonal antibody, in treatment or prevention of auto-immune irAE in ICI-treated patients. Methods Institutional databases from 2 melanoma centers were reviewed for patients treated with ICIs and tocilizumab. Longitudinal assessment of C-reactive protein (CRP) and assessment of clinical improvement or prevention of flare of pre-existing auto-immune conditions were utilised to evaluate the benefit of tocilizumab. Results Twenty-two patients were identified. Two were treated prophylactically. Twenty were treated for management of irAEs. Median time to irAE onset from ICI start was 48 days (range 8–786) and from irAE onset to tocilizumab 32 days (range 1–192). Median time to irAE resolution from tocilizumab was 6.5 days (range 1–93). Clinical improvement/benefit was demonstrated in 21/22 patients. Median CRP prior to ICI administration was 32 mg/l (range 0.3–99), at the onset of irAE 49.5 mg/L (range 0.3–251, P = 0.047) and after tocilizumab 18 mg/L (range 0.3–18, P = 0.0011). Tocilizumab was well tolerated with self-limiting and transient toxicities in 11 (50%) patients. From start of ICI, median progression-free survival was 6 months (range 3.9–18.8) and median overall survival was not reached. Conclusions Tocilizumab was a well-tolerated and effective steroid-sparing treatment for both management of irAEs, as well as prevention of flare of pre-existing auto-immune disorders. Prospective trials to evaluate its efficacy and impact on cancer outcomes compared with standard strategies are required

    Regulation of Proteins Implicated in Alzheimer’s Disease by MicroRNAs

    Get PDF
    poster abstractAlzheimer’s Disease (AD) is a neurodegenerative disorder characterized by the deposition of Amyloid-Beta (Aβ) peptide in the brain. This toxic peptide is generated by the sequential cleavage of Amyloid Precursor Protein (APP) by Beta-site APP-cleaving enzyme-1 (BACE-1) and γ-secretase. The disorder is also characterized by the perturbation of calcium homeostasis in neurons. MicroRNAs are short, single-stranded RNAs that are able to influence protein expression by targeting the 3’ Untranslated region (UTR) or 5’ UTR of mRNAs. Previous work in our laboratory has shown that miR-101, miR-153 and miR-346 can regulate APP whereas miR-339-5p can lower BACE1 expression. Here, we aim to reduce APP, BACE1 and Aβ levels, in vitro, by the addition of microRNAs that target the 3’ UTR of APP and BACE1. We show that in a human astrocytoma-glioblastoma (U373) cell line, the expression of BACE1 protein is significantly reduced compared to the mock condition upon transfecting miR-298, miR-328 and miR-144. miR-298 also reduces Aβ levels in these cells. Similarly, in HeLa cells, we show that miR-520c, miR-20b and miR-144 produce a reduction in APP expression compared to both mock and a negative control microRNA mimic. Additionally, we observed that knocking down APP using siRNA, but not knocking down BACE1, lowers basal intracellular calcium levels as well as changes the kinetics of Potassium Chloride (KCl)-induced intracellular calcium influx in a human fetal brain (HFB) culture, when compared to control. miR-346 increases basal calcium levels, but does not affect KCl-induced calcium transients in our HFB culture. Taken together, these results show that miRNAs can influence both the protein expression as well as calcium homeostasis in different human cell culture models. By reducing levels of proteins implicated in AD pathology and by reversing calcium dysregulation, our results will benefit AD research and generate possibilities for novel therapeutics

    Gas-phase synthesis of benzene via the propargyl radical self-reaction

    Get PDF
    Polycyclic aromatic hydrocarbons (PAHs) have been invoked in fundamental molecular mass growth processes in our galaxy. We provide compelling evidence of the formation of the very first ringed aromatic and building block of PAHs—benzene—via the self-recombination of two resonantly stabilized propargyl (C3H3) radicals in dilute environments using isomer-selective synchrotron-based mass spectrometry coupled to theoretical calculations. Along with benzene, three other structural isomers (1,5-hexadiyne, fulvene, and 2-ethynyl-1,3-butadiene) and o-benzyne are detected, and their branching ratios are quantified experimentally and verified with the aid of computational fluid dynamics and kinetic simulations. These results uncover molecular growth pathways not only in interstellar, circumstellar, and solar systems environments but also in combustion systems, which help us gain a better understanding of the hydrocarbon chemistry of our universe

    Evolution and origin of merlin, the product of the Neurofibromatosis type 2 (NF2) tumor-suppressor gene

    Get PDF
    BACKGROUND: Merlin, the product of the Neurofibromatosis type 2 (NF2) tumor suppressor gene, belongs to the ezrin-radixin-moesin (ERM) subgroup of the protein 4.1 superfamily, which links cell surface glycoproteins to the actin cytoskeleton. While merlin's functional activity has been examined in mammalian and Drosophila models, little is understood about its evolution, diversity, and overall distribution among different taxa. RESULTS: By combining bioinformatic and phylogenetic approaches, we demonstrate that merlin homologs are present across a wide range of metazoan lineages. While the phylogenetic tree shows a monophyletic origin of the ERM family, the origin of the merlin proteins is robustly separated from that of the ERM proteins. The derivation of merlin is thought to be in early metazoa. We have also observed the expansion of the ERM-like proteins within the vertebrate clade, which occurred after its separation from Urochordata (Ciona intestinalis). Amino acid sequence alignment reveals the absence of an actin-binding site in the C-terminal region of all merlin proteins from various species but the presence of a conserved internal binding site in the N-terminal domain of the merlin and ERM proteins. In addition, a more conserved pattern of amino acid residues is found in the region containing the so-called "Blue Box," although some amino acid substitutions in this region exist in the merlin sequences of worms, fish, and Ciona. Examination of sequence variability at functionally significant sites, including the serine-518 residue, the phosphorylation of which modulates merlin's intra-molecular association and function as a tumor suppressor, identifies several potentially important sites that are conserved among all merlin proteins but divergent in the ERM proteins. Secondary structure prediction reveals the presence of a conserved α-helical domain in the central to C-terminal region of the merlin proteins of various species. The conserved residues and structures identified correspond to the important sites highlighted by the available crystal structures of the merlin and ERM proteins. Furthermore, analysis of the merlin gene structures from various organisms reveals the increase of gene length during evolution due to the expansion of introns; however, a reduction of intron number and length appears to occur in the merlin gene of the insect group. CONCLUSION: Our results demonstrate a monophyletic origin of the merlin proteins with their root in the early metazoa. The overall similarity among the primary and secondary structures of all merlin proteins and the conservation of several functionally important residues suggest a universal role for merlin in a wide range of metazoa
    • …
    corecore