13 research outputs found

    First suggestions for a WLCG fast benchmark

    Get PDF

    CPU benchmarking at GridKa (Update April 2016)

    Get PDF

    Benchmarking bei Beschaffung und Betrieb des GridKa-Clusters

    Get PDF

    Analysis of empty ATLAS pilot jobs

    Get PDF

    Analysis of empty ATLAS pilot jobs

    Get PDF
    International audienceIn this analysis we quantify the wallclock time used by short empty pilot jobs on a number of WLCG compute resources. Pilot factory logs and site batch logs are used to provide independent accounts of the usage. Results show a wide variation of wallclock time used by short jobs depending on the site and queue, and changing with time. For a reference dataset of all jobs in August 2016, the fraction of wallclock time used by empty jobs per studied site ranged from 0.1% to 0.8%. Aside from the wall time used by empty pilots, we also looked at how many pilots were empty as a fraction of all pilots sent. Binning the August dataset into days, empty fractions between 2% and 90% were observed. The higher fractions correlate well with periods of few actual payloads being sent to the site

    HEPiX Benchmarking Solution for WLCG Computing Resources

    Get PDF
    International audienceThe HEPiX Benchmarking Working Group has developed a framework to benchmark the performance of a computational server using the software applications of the High Energy Physics (HEP) community. This framework consists of two main components, named HEP-Workloads and HEPscore. HEP-Workloads is a collection of standalone production applications provided by a number of HEP experiments. HEPscore is designed to run HEP-Workloads and provide an overall measurement that is representative of the computing power of a system. HEPscore is able to measure the performance of systems with different processor architectures and accelerators. The framework is completed by the HEP Benchmark Suite that simplifies the process of executing HEPscore and other benchmarks such as HEP-SPEC06, SPEC CPU 2017, and DB12. This paper describes the motivation, the design choices, and the results achieved by the HEPiX Benchmarking Working group. A perspective on future plans is also presented

    Using HEP experiment workflows for the benchmarking and accounting of WLCG computing resources

    Get PDF
    Benchmarking of CPU resources in WLCG has been based on the HEP-SPEC06 (HS06) suite for over a decade. It has recently become clear that HS06, which is based on real applications from non-HEP domains, no longer describes typical HEP workloads. The aim of the HEP-Benchmarks project is to develop a new benchmark suite for WLCG compute resources, based on real applications from the LHC experiments. By construction, these new benchmarks are thus guaranteed to have a score highly correlated to the throughputs of HEP applications, and a CPU usage pattern similar to theirs. Linux containers and the CernVM-FS filesystem are the two main technologies enabling this approach, which had been considered impossible in the past. In this paper, we review the motivation, implementation and outlook of the new benchmark suite
    corecore