7 research outputs found

    Bone Tissue Engineering in Rat Calvarial Defects Using Induced Bone-like Tissue by rhBMPs from Immature Muscular Tissues In Vitro

    No full text
    This study aimed to induce bone-like tissue from immature muscular tissue (IMT) in vitro using commercially available recombinant human bone morphogenetic protein (rhBMP)-2, rhBMP-4, and rhBMP-7, and then implanting this tissue into a calvarial defect in rats to assess healing. IMTs were extracted from 20-day-old Sprague-Dawley (SD) fetal rats, placed on expanded polytetrafluoroethylene (ePTFE) with 10 ng/μL each of rhBMP-2, BMP-4, and BMP-7, and cultured for two weeks. The specimens were implanted into calvarial defects in 3-week-old SD rats for up to three weeks. Relatively strong radiopacity was observed on micro-CT two weeks after culture, and bone-like tissue, comprising osteoblastic cells and osteoids, was partially observed by H&E staining. Calcium, phosphorus, and oxygen were detected in the extracellular matrix using an electron probe micro analyzer, and X-ray diffraction patterns and Fourier transform infrared spectroscopy spectra of the specimen were found to have typical apatite crystal peaks and spectra, respectively. Furthermore, partial strong radiopacity and ossification were confirmed one week after implantation, and a dominant novel bone was observed after two weeks in the defect site. Thus, rhBMP-2, BMP-4, and BMP-7 differentiated IMT into bone-like tissue in vitro, and this induced bone-like tissue has ossification potential and promotes the healing of calvarial defects. Our results suggest that IMT is an effective tissue source for bone tissue engineering

    In Vitro Study of Zirconia Surface Modification for Dental Implants by Atomic Layer Deposition

    No full text
    Zirconia is a promising material for dental implants; however, an appropriate surface modification procedure has not yet been identified. Atomic layer deposition (ALD) is a nanotechnology that deposits thin films of metal oxides or metals on materials. The aim of this study was to deposit thin films of titanium dioxide (TiO2), aluminum oxide (Al2O3), silicon dioxide (SiO2), and zinc oxide (ZnO) on zirconia disks (ZR-Ti, ZR-Al, ZR-Si, and ZR-Zn, respectively) using ALD and evaluate the cell proliferation abilities of mouse fibroblasts (L929) and mouse osteoblastic cells (MC3T3-E1) on each sample. Zirconia disks (ZR; diameter 10 mm) were fabricated using a computer-aided design/computer-aided manufacturing system. Following the ALD of TiO2, Al2O3, SiO2, or ZnO thin film, the thin-film thickness, elemental distribution, contact angle, adhesion strength, and elemental elution were determined. The L929 and MC3T3-E1 cell proliferation and morphologies on each sample were observed on days 1, 3, and 5 (L929) and days 1, 4, and 7 (MC3T3-E1). The ZR-Ti, ZR-Al, ZR-Si, and ZR-Zn thin-film thicknesses were 41.97, 42.36, 62.50, and 61.11 nm, respectively, and their average adhesion strengths were 163.5, 140.9, 157.3, and 161.6 mN, respectively. The contact angle on ZR-Si was significantly lower than that on all the other specimens. The eluted Zr, Ti, and Al amounts were below the detection limits, whereas the total Si and Zn elution amounts over two weeks were 0.019 and 0.695 ppm, respectively. For both L929 and MC3T3-E1, the cell numbers increased over time on ZR, ZR-Ti, ZR-Al, and ZR-Si. Particularly, cell proliferation in ZR-Ti exceeded that in the other samples. These results suggest that ALD application to zirconia, particularly for TiO2 deposition, could be a new surface modification procedure for zirconia dental implants

    Bonding Characteristics of Silane Coupling Agent and MMA-Containing Primer to Various Composite CAD/CAM Blocks

    No full text
    This study evaluated the bonding characteristics of a silane coupling agent (SCA) and a methyl methacrylate (MMA)-containing primer (MCP) for 11 types of commercial composite blocks (CBs) for sandblasted and non-sandblasted surfaces. The shear bond strength (SBS) was measured according to ISO 29022: Notched-edge shear bond strength test. The SBS results demonstrated statistically significant differences between the CBs under all identical conditions. For the non-sandblasted groups, the SBSs of MCP-treated specimens were significantly higher than those of SCA-treated specimens for all but two CBs. Comparing the two treatments in sandblasted groups, the SBS was significantly higher for seven out of 11 MCP-treated RCB specimens, in contrast with three cases for the SCA-treated group. Two-way ANOVA for SBS showed the interaction effect between sandblasting and primer type for specific CBs, indicating that the sandblasting treatment improved SBS more effectively for SCA-treated specimens. Moreover, the effect of the SCA treatment was more material-dependent compared to that of the MCP treatment, which did not achieve a strong bond in all CBs but proved more effective than the SCA treatment, especially for non-sandblasted surfaces
    corecore