761 research outputs found

    Narrow gap Luttinger liquid in Carbon nanotubes

    Full text link
    Electron interactions reinforce minigaps induced in metallic nanotubes by an external field and turn the gap field dependence into a universal power law. An exactly solvable Gross-Neveau model with an SU(4) symmetry is derived for neutral excitations near half-filling. Charge excitations, described by a sin-Gordon perturbation of Luttinger liquid theory, are composite solitons formed by the charged and neutral fields with two separate length scales. Charge compressibility at finite density, evaluated in terms of inter-soliton interaction, exhibits a crossover from overlapping to non-overlapping soliton state. Implications for the Coulomb blockade measurements are discussed.Comment: 4 pages, 2 figure

    Electron-Hole Asymmetry in Single-Walled Carbon Nanotubes Probed by Direct Observation of Transverse Quasi-Dark Excitons

    Full text link
    We studied the asymmetry between valence and conduction bands in single-walled carbon nanotubes (SWNTs) through the direct observation of spin-singlet transverse dark excitons using polarized photoluminescence excitation spectroscopy. The intrinsic electron-hole (e-h) asymmetry lifts the degeneracy of the transverse exciton wavefunctions at two equivalent K and K' valleys in momentum space, which gives finite oscillator strength to transverse dark exciton states. Chirality-dependent spectral weight transfer to transverse dark states was clearly observed, indicating that the degree of the e-h asymmetry depends on the specific nanotube structure. Based on comparison between theoretical and experimental results, we evaluated the band asymmetry parameters in graphene and various carbon nanotube structures.Comment: 11 pages, 4 figure

    Luminosity functions of Lyman-alpha emitters at z=6.5, and z=5.7: evidence against reionization at z=6

    Full text link
    Lyman-alpha emission from galaxies should be suppressed completely or partially at redshifts beyond reionization. Without knowing the instrinsic properties of galaxies at z = 6.5, this attenuation is hard to infer in any one source, but can be infered from a comparison of luminosity functions of lyman-alpha emitters at redshifts just before and after reionization. We combine published surveys of widely varying depths and areas to construct luminosity functions at z=6.5 and 5.7, where the characteristic luminosity L_star and density phi_star are well constrained while the faint-end slope of the luminosity function is essentially unconstrained. Excellent consistency is seen in all but one published result. We then calculate the likelihood of obtaining the z=6.5 observations given the z=5.7 luminosity function with (A) no evolution and (B) an attenuation of a factor of three. Hypothesis (A) gives an acceptable likelihood while (B) does not. This indicates that the z=6.5 lyman-alpha lines are not strongly suppressed by a neutral intergalactic medium and that reionization was largely complete at z = 6.5.Comment: Submitted to Astrophysical Journal Letter

    Chirality effects in carbon nanotubes

    Full text link
    We consider chirality related effects in optical, photogalvanic and electron-transport properties of carbon nanotubes. We show that these properties of chiral nanotubes are determined by terms in the electron effective Hamiltonian describing the coupling between the electron wavevector along the tube principal axis and the orbital momentum around the tube circumference. We develop a theory of photogalvanic effects and a theory of d.c. electric current, which is linear in the magnetic field and quadratic in the bias voltage. Moreover, we present analytic estimations for the natural circular dichroism and magneto-spatial effect in the light absorption.Comment: 23 pages, 3 figure

    Lymanα\alpha Emitters beyond Redshift 5:The Dawn of Galaxy Formation

    Full text link
    The 8m class telescopes in the ground-based optical astronomy together with help from the ultra-sharp eye of the Hubble Space Telescope have enabled us to observe forming galaxies beyond redshift z=5z=5. In particular, more than twenty Lyα\alpha-emitting galaxies have already been found at z>5z > 5. These findings provide us with useful hints to investigate how galaxies formed and then evolved in the early universe. Further, detailed analysis of Lyα\alpha emission line profiles are useful in exploring the nature of the intergalactic medium because the trailing edge of cosmic reionization could be close to z∌6z \sim 6 -- 7, at which forming galaxies have been found recently. We also discuss the importance of superwinds from forming galaxies at high redshift, which has an intimate relationship between galaxies and the intergalactic medium. We then give a review of early cosmic star formation history based on recent progress in searching for Lyα\alpha-emitting young galaxies beyond redshift 5.Comment: 23 pages, 12 figures, jkas35.sty. To appear in the proceedings of the APCTP WoFormation and Interaction of Galaxies, edited by Hyung Mok Leerkshop o

    Optical properties of SiC nanotubes: A systematic ab initio\textit{ab initio} study

    Full text link
    The band structure and optical dielectric function Ï”\epsilon of single-walled zigzag [(3,0),(4,0),(5,0),(6,0),(8,0),(9,0),(12,0),(16,0),(20,0),(24,0)], armchair [(3,3),(4,4),(5,5),(8,8),(12,12),(15,15)], and chiral [(4,2),(6,2),(8,4),(10,4)] SiC-NTs as well as the single honeycomb SiC sheet have been calculated within DFT with the LDA. It is found that all the SiC nanotubes are semiconductors, except the ultrasmall (3,0) and (4,0) zigzag tubes which are metallic. Furthermore, the band gap of the zigzag SiC-NTs which is direct, may be reduced from that of the SiC sheet to zero by reducing the diameter (DD), though the band gap for all the SiC nanotubes with a diameter larger than ~20 \AA is almost independent of diameter. For the electric field parallel to the tube axis (E∄z^E\parallel \hat{z}), the Ï”â€Čâ€Č\epsilon'' for all the SiC-NTs with a moderate diameter (say, DD >> 8 \AA ) in the low-energy region (0~6 eV) consists of a single distinct peak at ~3 eV. However, for the small diameter SiC nanotubes such as the (4,2),(4,4) SiC-NTs, the Ï”â€Čâ€Č\epsilon'' spectrum does deviate markedly from this general behavior. In the high-energy region (from 6 eV upwards), the Ï”â€Čâ€Č\epsilon'' for all the SiC-NTs exhibit a broad peak centered at ~7 eV. For the electric field perpendicular to the tube axis (E⊄z^E\perp \hat{z}), the Ï”â€Čâ€Č\epsilon'' spectrum of all the SiC-NTs except the (4,4), (3,0) and (4,0) nanotubes, in the low energy region also consists of a pronounced peak at around 3 eV whilst in the high-energy region is roughly made up of a broad hump starting from 6 eV. The magnitude of the peaks is in general about half of the magnitude of the corresponding ones for E∄z^E\parallel \hat{z}

    An Overdensity of Lyman-alpha Emitters at Redshift z=5.7 near the Hubble Ultra Deep Field

    Full text link
    We have identified an obvious and strong large scale structure at redshift z=5.75 in a wide (31 by 33 arcminute) field, narrowband survey of the Chandra Deep Field South region. This structure is traced by 17 candidate Lyman alpha emitters, among which 12 are found in an 823nm filter (corresponding to Lyman alpha at z=5.77 +- 0.03) and 5 in an 815nm image (z=5.70 +- 0.03). The Lyman alpha emitters in both redshift bins are concentrated in one quadrant of the field. The Hubble Ultra Deep Field, Chandra Deep Field South, and GOODS-South fields all lie near the edge of this overdense region. Our results are consistent with reports of an overdensity in the UDF region at z=5.9. This structure is the highest redshift overdensity found so far.Comment: 12 pages, AASTeX. Submitted to ApJ Letters, and revised in response to referee's comment

    Can Electric Field Induced Energy Gaps In Metallic Carbon Nanotubes?

    Full text link
    The low-energy electronic structure of metallic single-walled carbon nanotube (SWNT) in an external electric field perpendicular to the tube axis is investigated. Based on tight-binding approximation, a field-induced energy gap is found in all (n, n) SWNTs, and the gap shows strong dependence on the electric field and the size of the tubes. We numerically find a universal scaling that the gap is a function of the electric field and the radius of SWNTs, and the results are testified by the second-order perturbation theory in weak field limit. Our calculation shows the field required to induce a 0.1 eV{\rm eV} gap in metallic SWNTs can be easily reached under the current experimental conditions. It indicates a kind of possibility to apply nanotubes to electric signal-controlled nanoscale switching devices
    • 

    corecore