3 research outputs found

    Additional file 2: Figure S2. of Neonatal AAV delivery of alpha-synuclein induces pathology in the adult mouse brain

    No full text
    Neither ThioS positive structures nor neurodegeneration are observed in AAV-αsyn animals. (a-i) Sagittal brain sections were incubated with anti human asyn antibody followed by 5 min in 1% thioS solution. Thalamus (a-c) and cortex (d-f) of AAV-asyn animal show strong asyn immunoreactivity (a, d) that is not thioS- positive (b, e). As a control, human DLBD brain was co-stained in parallel. Cortical Lewy bodies positive for human asyn (g) are reactive to thioS (h, i). Representative images of NeuN-labeled cells in the cortex of AAV-asyn (n = 9) and AAV-venus (n = 7) at 6 months of age (k). Quantification of NeuN-positive cells in the whole cortex (area delineated in blue). Data are presented as as mean ± S.E.M means. Scale bars in i = 40 μm and applied to a-h; Scale bars in k = 2 mm. Abbreviation: DLBD; Diffuse Lewy Body Disease. (PDF 1541 kb

    Additional file 1: Figure S1. of Neonatal AAV delivery of alpha-synuclein induces pathology in the adult mouse brain

    No full text
    Representative intensity of Human αsyn immunostaining (a) Photomicrographs representative of the variability of expression observed in the different group of animals at 1, 3 and 6 months of age (b) Level of expression of the transgene was assessed by western blot in AAV-αsyn at 3 months of age and compared to transgenic mice overexpressing αsyn under Thy1 promoter (line 61) at the same age. Antibody recognizing human and mouse αsyn was used (clone 42). (c) Quantification of the western blot shows αsyn level increase of 2.93 ± 0.33 fold in the AAV-αsyn animals and 3.23 ± 0.12 fold in the line 61. .The data are expressed as the amount of total level of αsyn normalized to actin (*, p < 0.05) and are from 3 repeated experiments. (PDF 1678 kb

    Additional file 1: of Loss of Tmem106b is unable to ameliorate frontotemporal dementia-like phenotypes in an AAV mouse model of C9ORF72-repeat induced toxicity

    No full text
    Figures S1 through S10. Figure S1. Transcript expression of Tmem106b in Tmem106b deficiency mice at different ages. Figure S2. Tmem106b reduction does not alter the expression of its family members. Figure S3. Tmem106b immunoreactivity in mice with Tmem106b gene interruption using an additional antibody. Figure S4. The body weight of 2R and 66R injected mouse. Figure S5. Tmem106b reduction alone induces astrogliosis. Figure S6. Heterozygous loss of Tmem106b partially rescues 66R injection-induced neuronal loss. Figure S7. pTdp-43 immunoreactivity in 2R and 66R injected mouse brain. Figure S8. Endogenous C9orf72 protein levels in 2R- and 66R-injected mouse brain. Figure S9. Validation of (GGGGCC)66 repeat overexpression and C9ORF72 knockdown. Figure S10. The effect of (GGGGCC)66 overexpression or C9ORF72 knockdown on TMEM106B protein levels in U251 cells. (DOCX 26231 kb
    corecore