4,095 research outputs found
Laboratory discharge studies of a 6 V alkaline lantern-type battery Eveready Energizer no. 528, under various ambient temperatures (-15 deg C and + 22 deg C) and loads (30 omega and 60 omega)
The voltages of two Eveready No. 528 batteries, one the test battery, the other the control battery, were simultaneously recorded as they were discharged across 30 omega loads using a dual chart recorder. The test battery was initially put in a freezer at -15 + or - 3 C. After its voltage had fallen to .6 V, it was brought back out into the room at 22 + or - 3 C. A second run was made with 60 omega loads. Assuming a 3.0 V cut-off, the total energy output of the test battery at -15 C was 26 WHr 30 omega and 35 WHr 60 omega, and the corresponding numbers for the control battery at 22 C were 91 WHr and 100 WHr. When the test battery was subsequently allowed to warm up, the voltage rose above 4 V and the total energy output rose to 80 WHr 30 omega and 82 WHR 60 omega
The North Carolina A and T State University Student Space Shuttle Program
Inspired into being in 1979 by the late astronaut, Dr. Ronald McNair, the primary goal of this student centered program is to perform two experiments, Arthopod Development Study and Crystal Growth Study. Since 1979, 78 different students representing 12 majors have participated in every phase of development of the payload -- from coming up with the original ideas to final fabrication and testing. Students have also been involved in many extra activities such as presenting their results at annual meetings and hosting tours of our lab for local schools. The program has received extensive outside support in the form of funds, technical assistance and donated parts. The payload, made primarily out of aluminum, consists of a central column structure, a battery box, a crystal growth box, an arthropod development box, four control circuit boxes, and a thermograph box. The battery box contains 24, Eveready 6V, Alkaline batteries. The thermograph box contains 3 Ryan TempMentors. Fabrication of the payload is essentially complete and a complete testing program has been initiated
Jena Soil Model (JSM v1.0; revision 1934): a microbial soil organic carbon model integrated with nitrogen and phosphorus processes
Plantâsoil interactions, such as the coupling of plants' below-ground biomass allocation with soil organic matter (SOM) decomposition, nutrient release and plant uptake, are essential to understand the response of carbon (C) cycling to global changes. However, these processes are poorly represented in the current terrestrial biosphere models owing to the simple first-order approach of SOM cycling and the ignorance of variations within a soil profile. While the emerging microbially explicit soil organic C models can better describe C formation and turnover, at present, they lack a full coupling to the nitrogen (N) and phosphorus (P) cycles with the soil profile. Here we present a new SOM model â the Jena Soil Model (JSM) â which is microbially explicit, vertically resolved and integrated with the N and P cycles. To account for the effects of nutrient availability and litter quality on decomposition, JSM includes the representation of enzyme allocation to different depolymerisation sources based on the microbial adaptation approach as well as of nutrient acquisition competition based on the equilibrium chemistry approximation approach. Herein, we present the model structure and basic features of model performance in a beech forest in Germany. The model reproduced the main SOM stocks and microbial biomass as well as their vertical patterns in the soil profile. We further tested the sensitivity of the model to parameterisation and showed that JSM is generally sensitive to changes in microbial stoichiometry and processes
Spin effects in strong-field laser-electron interactions
The electron spin degree of freedom can play a significant role in
relativistic scattering processes involving intense laser fields. In this
contribution we discuss the influence of the electron spin on (i) Kapitza-Dirac
scattering in an x-ray laser field of high intensity, (ii) photo-induced
electron-positron pair production in a strong laser wave and (iii) multiphoton
electron-positron pair production on an atomic nucleus. We show that in all
cases under consideration the electron spin can have a characteristic impact on
the process properties and their total probabilities. To this end,
spin-resolved calculations based on the Dirac equation in the presence of an
intense laser field are performed. The predictions from Dirac theory are also
compared with the corresponding results from the Klein-Gordon equation.Comment: 9 pages, 6 figure
Low-velocity impact craters in ice and ice-saturated sand with implications for Martian crater count ages
We produced a series of decimeter-sized impact craters in blocks of ice near 0°C and â70°C and in ice-saturated sand near â70°C as a preliminary investigation of cratering in materials analogous to those found on Mars and the outer solar system satellites. The projectiles used were standard 0.22 and 0.30 caliber bullets fired at velocities between 0.3 and 1.5 km/s, with kinetic energies at impact between 10^9 and 4Ă10^(10) ergs. Crater diameters in the ice-saturated sand were âŒ2 times larger than craters in the same energy and velocity range in competent blocks of granite, basalt and cement. Craters in ice were âŒ3 times larger. If this dependence of crater size on strength persists to large hypervelocity impact craters, then surfaces of geologic units composed of ice or ice-saturated soil would have greater crater count ages than rocky surfaces with identical influx histories. The magnitude of the correction to crater counts required by this strength effect is comparable to the magnitudes of corrections required by variations in impact velocity and surface gravity used in determining relative interplanetary chronologies. The relative sizes of craters in ice and ice-saturated sand imply that the tensile strength of ice-saturated sand is a strong inverse function of temperature. If this is true, then Martian impact crater energy versus diameter scaling may also be a function of latitude
Extremely energetic cosmic neutrinos: Opportunities for astrophysics, particle physics, and cosmology
Existing and planned observatories for cosmic neutrinos open up a huge window
in energy from 10^7 to 10^17 GeV. Here, we discuss in particular the
possibilities to use extremely energetic cosmic neutrinos as a diagnostic of
astrophysical processes, as a tool for particle physics beyond the Standard
Model, and as a probe of cosmology.Comment: 10 pages, 7 figures, ws-procs9x6.cls, talk presented at the ARENA
Workshop, DESY, Zeuthen, Germany, May 17-19, 200
From AMANDA to IceCube
The first string of the neoteric high energy neutrino telescope IceCube
successfully began operating in January 2005. It is anticipated that upon
completion the new detector will vastly increase the sensitivity and extend the
reach of AMANDA to higher energies. A discussion of the IceCube's discovery
potential for extra-terrestrial neutrinos, together with the prospects of new
physics derived from the ongoing AMANDA research will be the focus of this
paper. Preliminary results of the first antarctic high energy neutrino
telescope AMANDA searching in the muon neutrino channel for localized and
diffuse excess of extra-terrestrial neutrinos will be reviewed using data
collected between 2000 and 2003. Neutrino flux limits obtained with the
all-flavor dedicated UHE and cascade analyses will be described. A first
neutrino spectrum above one TeV in agreement with atmospheric neutrino flux
expectations and no extra-terrestrial contribution will be presented, followed
by a discussion of a limit for neutralino CDM candidates annihilating in the
center of the Sun.Comment: 15 pages, 8 figures Invited talk contribution at 5th International
Conference on Non-accelerator New Physics (NANP 05), Dubna, Russia, 20-25 Jun
200
A model for MRI contrast enhancement using T_1 agents
Contrast in MRI relies on differences in the local environment of water and is often enhanced by using contrast agents. We present a simple model for evaluating the minimal contrast agent concentration required to produce âsatisfactoryâ contrast enhancement in magnetic resonance images. Previous strategies have been based largely on empirical results for specific systems. The present tissue contrast model (TCM) can be applied to âconventional,â targeted, or biochemically responsive agents. The model results are formulated so that only a small number of parameters are required to analyze a given scenario. The TCM is a particularly useful tool in the development of new classes of magnetic resonance contrast media. These agents will have the ability to target specific cells or tissue, and perhaps be able to report on their physiological status. As an example of the applicability of the TCM, we test it against in vivo magnetic resonance microscopy results in frog embryos that have focal cell populations labeled with contrast agent by using calibrated single-cell microinjection techniques
- âŠ