151 research outputs found

    Using APOGEE Wide Binaries to Test Chemical Tagging with Dwarf Stars

    Full text link
    Stars of a common origin are thought to have similar, if not nearly identical, chemistry. Chemical tagging seeks to exploit this fact to identify Milky Way subpopulations through their unique chemical fingerprints. In this work, we compare the chemical abundances of dwarf stars in wide binaries to test the abundance consistency of stars of a common origin. Our sample of 31 wide binaries is identified from a catalog produced by cross-matching APOGEE stars with UCAC5 astrometry, and we confirm the fidelity of this sample with precision parallaxes from Gaia DR2. For as many as 14 separate elements, we compare the abundances between components of our wide binaries, finding they have very similar chemistry (typically within 0.1 dex). This level of consistency is more similar than can be expected from stars with different origins (which show typical abundance differences of 0.3-0.4 dex within our sample). For the best measured elements, Fe, Si, K, Ca, Mn, and Ni, these differences are reduced to 0.05-0.08 dex when selecting pairs of dwarf stars with similar temperatures. Our results suggest that APOGEE dwarf stars may currently be used for chemical tagging at the level of ∼\sim0.1 dex or at the level of ∼\sim0.05 dex when restricting for the best-measured elements in stars of similar temperatures. Larger wide binary catalogs may provide calibration sets, in complement to open cluster samples, for on-going spectroscopic surveys.Comment: 21 pages, 14 figures, accepted for publication in Ap

    No Neutron Star Companion To The Lowest Mass SDSS White Dwarf

    Get PDF
    SDSS J091709.55+463821.8 (hereafter J0917+4638) is the lowest surface gravity white dwarf (WD) currently known, with log g = 5.55 +/- 0.05 (M ~ 0.17 M_sun; Kilic et al. 2007a,b). Such low-mass white dwarfs (LMWDs) are believed to originate in binaries that evolve into WD/WD or WD/neutron star (NS) systems. An optical search for J0917+4638's companion showed that it must be a compact object with a mass >= 0.28 M_sun (Kilic 2007b). Here we report on Green Bank Telescope 820 MHz and XMM-Newton X-ray observations of J0917+4638 intended to uncover a potential NS companion to the LMWD. No convincing pulsar signal is detected in our radio data. Our X-ray observation also failed to detect X-ray emission from J0917+4638's companion, while we would have detected any of the millisecond radio pulsars in 47 Tuc. We conclude that the companion is almost certainly another WD.Comment: 4 pages, 1 table; to appear in the Astrophysical Journal Letter

    The Factory and The Beehive II. Activity and Rotation in Praesepe and the Hyades

    Get PDF
    Open clusters are collections of stars with a single, well-determined age, and can be used to investigate the connections between angular-momentum evolution and magnetic activity over a star's lifetime. We present the results of a comparative study of the relationship between stellar rotation and activity in two benchmark open clusters: Praesepe and the Hyades. As they have the same age and roughly solar metallicity, these clusters serve as an ideal laboratory for testing the agreement between theoretical and empirical rotation-activity relations at ≈\approx600 Myr. We have compiled a sample of 720 spectra --- more than half of which are new observations --- for 516 high-confidence members of Praesepe; we have also obtained 139 new spectra for 130 high-confidence Hyads. We have collected rotation periods (ProtP_{rot}) for 135 Praesepe members and 87 Hyads. To compare HαH\alpha emission, an indicator of chromospheric activity, as a function of color, mass, and Rossby number RoR_o, we first calculate an expanded set of χ\chi values, with which we can obtain the HαH\alpha to bolometric luminosity ratio, LHα/LbolL_{H\alpha}/L_{bol}, even when spectra are not flux-calibrated and/or stars lack reliable distances. Our χ\chi values cover a broader range of stellar masses and colors (roughly equivalent to spectral types from K0 to M9), and exhibit better agreement between independent calculations, than existing values. We find no difference between the two clusters in their HαH\alpha equivalent width or LHα/LbolL_{H\alpha}/L_{bol} distributions, and therefore take the merged HαH\alpha and ProtP_{rot} data to be representative of 600-Myr-old stars. Our analysis shows that HαH\alpha activity in these stars is saturated for Ro≤0.11−0.03+0.02R_o\leq0.11^{+0.02}_{-0.03}. Above that value activity declines as a power-law with slope β=−0.73−0.12+0.16\beta=-0.73^{+0.16}_{-0.12}, before dropping off rapidly at Ro≈0.4R_o\approx0.4...Comment: 17 pages, 15 figures, Accepted by Ap

    Statistical Searches for Microlensing Events in Large, Non-Uniformly Sampled Time-Domain Surveys: A Test Using Palomar Transient Factory Data

    Get PDF
    Many photometric time-domain surveys are driven by specific goals, such as searches for supernovae or transiting exoplanets, which set the cadence with which fields are re-imaged. In the case of the Palomar Transient Factory (PTF), several sub-surveys are conducted in parallel, leading to non-uniform sampling over its ∼\sim20,000deg220,000 \mathrm{deg}^2 footprint. While the median 7.26deg27.26 \mathrm{deg}^2 PTF field has been imaged ∼\sim40 times in \textit{R}-band, ∼\sim2300deg22300 \mathrm{deg}^2 have been observed >>100 times. We use PTF data to study the trade-off between searching for microlensing events in a survey whose footprint is much larger than that of typical microlensing searches, but with far-from-optimal time sampling. To examine the probability that microlensing events can be recovered in these data, we test statistics used on uniformly sampled data to identify variables and transients. We find that the von Neumann ratio performs best for identifying simulated microlensing events in our data. We develop a selection method using this statistic and apply it to data from fields with >>10 RR-band observations, 1.1×1091.1\times10^9 light curves, uncovering three candidate microlensing events. We lack simultaneous, multi-color photometry to confirm these as microlensing events. However, their number is consistent with predictions for the event rate in the PTF footprint over the survey's three years of operations, as estimated from near-field microlensing models. This work can help constrain all-sky event rate predictions and tests microlensing signal recovery in large data sets, which will be useful to future time-domain surveys, such as that planned with the Large Synoptic Survey Telescope.Comment: 13 pages, 14 figures; accepted for publication in ApJ. fixed author lis
    • …
    corecore