528 research outputs found
Anti-transglutaminase 6 antibodies in children and young adults with cerebral palsy.
Objectives. We have previously reported a high prevalence of gluten-related serological markers (GRSM) in children and young adults with cerebral palsy (CP). The majority had no enteropathy to suggest coeliac disease (CD). Antibodies against transglutaminase 6 (anti-TG6) represent a new marker associated with gluten-related neurological dysfunction. The aim of this study was to investigate the prevalence of anti-TG6 antibodies in this group of individuals with an early neurological injury resulting in CP. Materials and Methods. Sera from 96 patients with CP and 36 controls were analysed for IgA/IgG class anti-TG6 by ELISA. Results. Anti-TG6 antibodies were found in 12/96 (13%) of patients with CP compared to 2/36 (6%) in controls. The tetraplegic subgroup of CP had a significantly higher prevalence of anti-TG6 antibodies 6/17 (35%) compared to the other subgroups and controls. There was no correlation of anti-TG6 autoantibodies with seropositivity to food proteins including gliadin. Conclusions. An early brain insult and associated inflammation may predispose to future development of TG6 autoimmunity
Direct evidence for efficient ultrafast charge separation in epitaxial WS/graphene heterostructure
We use time- and angle-resolved photoemission spectroscopy (tr-ARPES) to
investigate ultrafast charge transfer in an epitaxial heterostructure made of
monolayer WS and graphene. This heterostructure combines the benefits of a
direct gap semiconductor with strong spin-orbit coupling and strong
light-matter interaction with those of a semimetal hosting massless carriers
with extremely high mobility and long spin lifetimes. We find that, after
photoexcitation at resonance to the A-exciton in WS, the photoexcited holes
rapidly transfer into the graphene layer while the photoexcited electrons
remain in the WS layer. The resulting charge transfer state is found to
have a lifetime of \,ps. We attribute our findings to differences in
scattering phase space caused by the relative alignment of WS and graphene
bands as revealed by high resolution ARPES. In combination with spin-selective
excitation using circularly polarized light the investigated WS/graphene
heterostructure might provide a new platform for efficient optical spin
injection into graphene.Comment: 28 pages, 14 figure
Direct evidence for efficient ultrafast charge separation in epitaxial WS<sub>2</sub>/graphene heterostructures
We use time- and angle-resolved photoemission spectroscopy (tr-ARPES) to investigate ultrafast charge transfer in an epitaxial heterostructure made of monolayer WS2 and graphene. This heterostructure combines the benefits of a direct-gap semiconductor with strong spin-orbit coupling and strong light-matter interaction with those of a semimetal hosting massless carriers with extremely high mobility and long spin lifetimes. We find that, after photoexcitation at resonance to the A-exciton in WS2, the photoexcited holes rapidly transfer into the graphene layer while the photoexcited electrons remain in the WS2 layer. The resulting charge-separated transient state is found to have a lifetime of ∼1 ps. We attribute our findings to differences in scattering phase space caused by the relative alignment of WS2 and graphene bands as revealed by high-resolution ARPES. In combination with spin-selective optical excitation, the investigated WS2/graphene heterostructure might provide a platform for efficient optical spin injection into graphene
Ultrafast Momentum Imaging of Pseudospin-Flip Excitations in Graphene
The pseudospin of Dirac electrons in graphene manifests itself in a peculiar
momentum anisotropy for photo-excited electron-hole pairs. These interband
excitations are in fact forbidden along the direction of the light
polarization, and are maximum perpendicular to it. Here, we use time- and
angle-resolved photoemission spectroscopy to investigate the resulting
unconventional hot carrier dynamics, sampling carrier distributions as a
function of energy and in-plane momentum. We first show that the
rapidly-established quasi-thermal electron distribution initially exhibits an
azimuth-dependent temperature, consistent with relaxation through collinear
electron-electron scattering. Azimuthal thermalization is found to occur only
at longer time delays, at a rate that depends on the substrate and the static
doping level. Further, we observe pronounced differences in the electron and
hole dynamics in n-doped samples. By simulating the Coulomb- and
phonon-mediated carrier dynamics we are able to disentangle the influence of
excitation fluence, screening, and doping, and develop a microscopic picture of
the carrier dynamics in photo-excited graphene. Our results clarify new aspects
of hot carrier dynamics that are unique to Dirac materials, with relevance for
photo-control experiments and optoelectronic device applications.Comment: 23 pages, 12 figure
Une genre de nouvelle discrimination chromatique
Une mode comme celle des baskets rouges est un prétexte à distinguer les classes sociales. On pourrait continuer d'imaginer pour chaque groupe de femmes et d'hommes une couleur qui correspondrait au mieux à leurs aspirations et finirait par les décrire, au pied de la lettre. Pour démontrer que l'écriture inclusive devrait être aussi variée que les couleurs possibles de chaussures, ce récit distingue douze types de formulation non hétérosexiste adaptés sur mesure à autant de catégories d'individus.A trend such as the red sneakers one is a pretext to distinguish between social classes. We could keep on imagining for every group of women and men a colour matching as much as possible what they aspire to be, and at the end, which could literally describe them. To prove that gender-neutral language [or inclusive writing] should be as multifarious as the possibilities of shoes' colour, this narrative distinguish between twelve types of non-heterosexist phrasing, made to measure to so many categories of persons
Band Structure Dynamics in Indium Wires
One-dimensional Indium wires grown on Si(111) substrates, which are metallic
at high temperatures, become insulating below K due to the formation
of a Charge Density Wave (CDW). The physics of this transition is not
conventional and involves a multiband Peierls instability with strong interband
coupling. This CDW ground state is readily destroyed with femtosecond laser
pulses resulting in a light-induced insulator-to-metal phase transition. The
current understanding of this transition remains incomplete, requiring
measurements of the transient electronic structure to complement previous
investigations of the lattice dynamics. Time- and angle-resolved
photo\-emission spectroscopy with extreme ultra-violet radiation is applied to
this end. We find that the transition from the insulating to the metallic band
structure occurs within fs that is a fraction of the amplitude mode
period. The long life time of the transient state ( ps) is attributed to
trapping in a metastable state in accordance with previous work.Comment: 14 pages, 7 figure
Dynamics of Excited Electrons in Copper and Ferromagnetic Transition Metals: Theory and Experiment
Both theoretical and experimental results for the dynamics of photoexcited
electrons at surfaces of Cu and the ferromagnetic transition metals Fe, Co, and
Ni are presented. A model for the dynamics of excited electrons is developed,
which is based on the Boltzmann equation and includes effects of
photoexcitation, electron-electron scattering, secondary electrons (cascade and
Auger electrons), and transport of excited carriers out of the detection
region. From this we determine the time-resolved two-photon photoemission
(TR-2PPE). Thus a direct comparison of calculated relaxation times with
experimental results by means of TR-2PPE becomes possible. The comparison
indicates that the magnitudes of the spin-averaged relaxation time \tau and of
the ratio \tau_\uparrow/\tau_\downarrow of majority and minority relaxation
times for the different ferromagnetic transition metals result not only from
density-of-states effects, but also from different Coulomb matrix elements M.
Taking M_Fe > M_Cu > M_Ni = M_Co we get reasonable agreement with experiments.Comment: 23 pages, 11 figures, added a figure and an appendix, updated
reference
- …