8 research outputs found

    Wound Morphology and Topography in the Diabetic Foot: Hurdles in Implementing Angiosome-Guided Revascularization

    No full text
    Purpose. Angiosome-guided revascularization is an approach that improves wound healing but requires a surgeon to determine which angiosomes are ischemic. This process can be more difficult than anticipated because diabetic foot (DF) wounds vary greatly in quantity, morphology, and topography. This paper explores to what extent the heterogeneous presentation of DF wounds impedes development of a proper revascularization strategy. Methods. Data was retrieved from a registry of patients scheduled for below-the-knee (BTK) revascularization. Photographs of the foot and historic benchmark diagrams were used to assign wounds to their respective angiosomes. Results. In 185 limbs we detected 345 wounds. Toe wounds (53.9%) could not be designated to a specific angiosome due to dual blood supply. Ambiguity in wound stratification into angiosomes was highest at the heel, achilles tendon, and lateral/medial side of the foot and lowest for malleolar wounds. In 18.4% of the DF, at least some wounds could not confidently be categorized. Proximal wounds (coinciding with toe wounds) further steered revascularization strategy in 63.6%. Multiple wounds required multiple BTK revascularization in 8.6%. Conclusion. The heterogeneous presentation in diabetic foot wounds hampers unambiguous identification of ischemic angiosomes, and as such diminishes the capacity of the angiosome model to optimize revascularization strategy

    Improving the diagnosis of peripheral arterial disease in below-the-knee arteries by adding time-resolved CT scan series to conventional run-off CT angiography. First experience with a 256-slice CT scanner

    No full text
    Purpose: Run-off Computed Tomography Angiography (run-off CTA) of the lower extremities has become the method of choice for the diagnostic imaging of patients suffering from peripheral arterial disease (PAD). However, it remains a challenging radiological examination with a considerable risk of non-diagnostic image quality for the assessment of below-the-knee arteries. In this study, we investigate the diagnostic benefit of adding time-resolved CT scan series to the standard run-off CTA by performing repeated axial acquisitions over the calves of the patient during a second bolus of iodinated contrast injection. Materials and Methods: This prospective study included 20 patients (9 male, 11 female; mean age 66.1 ± 14.9 years) who received a standard run-off CTA and an additional time-resolved CT scan series after a 10 min delay. The time-resolved series consisted of 18 repeated axial acquisitions over the calves directly below the knee with a 2 s interphase delay. For both series, two observers independently assessed the anterior tibial, posterior tibial and peroneal arteries of both legs for following criteria: arterial enhancement, presence and degree of stenosis, the confidence of grading, degree of stenosis and venous overlay. Quantitative assessment of arterial enhancement was performed by measuring the mean CT values (HU) in all arteries. Radiation exposure was quantified by the effective dose. Results: A total of 118 arteries were assessed. The observer study showed that the additional time-resolved series improved both arterial enhancement (64% considered optimal enhanced versus 44%) and diagnostic confidence (59% considered as certain versus 33%) for the assessment of arterial stenosis (all p < 0.05). Venous overlay reduced from 15% to 6%. In all three arteries, the measured contrast enhancement by CT values (HU) was considerably higher (average 48%, p < 0.05) with the time-resolved series. The time-resolved series had an effect on stenosis classification (p = 0.03): a higher number of arteries were graded as having a non-significant stenosis (78.8% versus 71.2%). The interobserver variability in stenosis classification improved from κ = 0.39 to κ = 0.61. The mean effective dose was 5.1 ± 1.3 mSv for the run-off CTA and 0.2 ± 0.07 mSv for the time-resolved series. Per patient, a total volume of 140 mL contrast agent was injected. Conclusion: A dynamic CT scan protocol with repeated axial series can be added to a standard helical run-off CTA sequence for the lower extremities within the same CT examination, and it increases image quality and diagnostic confidence for the assessment of presence and degree of arterial stenosis in below-the-knee arteries

    Supplementary_Table – Supplemental material for Efficacy of urokinase lock to treat thrombotic dysfunction of tunneled hemodialysis catheters: A retrospective cohort study

    No full text
    <p>Supplemental material, Supplementary_Table for Efficacy of urokinase lock to treat thrombotic dysfunction of tunneled hemodialysis catheters: A retrospective cohort study by Freya Van Hulle, Florence Bonkain, Dieter De Clerck, Dimitri Aerden, Isabelle Vanwijn, Christian Tielemans and Karl Martin Wissing in The Journal of Vascular Access</p

    Supplementary_Methods – Supplemental material for Efficacy of urokinase lock to treat thrombotic dysfunction of tunneled hemodialysis catheters: A retrospective cohort study

    No full text
    <p>Supplemental material, Supplementary_Methods for Efficacy of urokinase lock to treat thrombotic dysfunction of tunneled hemodialysis catheters: A retrospective cohort study by Freya Van Hulle, Florence Bonkain, Dieter De Clerck, Dimitri Aerden, Isabelle Vanwijn, Christian Tielemans and Karl Martin Wissing in The Journal of Vascular Access</p

    STROBE_checklist_cohort – Supplemental material for Efficacy of urokinase lock to treat thrombotic dysfunction of tunneled hemodialysis catheters: A retrospective cohort study

    No full text
    <p>Supplemental material, STROBE_checklist_cohort for Efficacy of urokinase lock to treat thrombotic dysfunction of tunneled hemodialysis catheters: A retrospective cohort study by Freya Van Hulle, Florence Bonkain, Dieter De Clerck, Dimitri Aerden, Isabelle Vanwijn, Christian Tielemans and Karl Martin Wissing in The Journal of Vascular Access</p
    corecore