358 research outputs found

    Dispersion of the F2+ center in KCl crystal

    Get PDF

    Magneto-optical properties of Fi+(2) Center in KCI:SH-

    Get PDF

    Detection of Reconnection Signatures in Solar Flares

    Get PDF
    Solar flare forecasting is limited by the current understanding of mechanisms that govern magnetic reconnection, the main physical phenomenon associated with these events. As a result, forecasting relies mainly on climatological correlations to historical events rather than the underlying physics principles. Solar physics models place the neutral point of the reconnection event in the solar corona. Correspondingly, studies of photospheric magnetic fields indicate changes during solar flares—particularly in relation to the field helicity—on the solar surface as a result of the associated magnetic reconnection. This study utilizes data from the Solar Dynamics Observatory (SDO) Helioseismic and Magnetic Imager (HMI) and SpaceWeather HMI Active Region Patches (SHARPs) to analyze full vector-field component data of the photospheric magnetic field during solar flares within a large HMI dataset (May 2010 through September 2019). This analysis is then used to identify and compare trends in the different categories of flare strengths and determine indications of the physical phenomena taking place

    Dispersion of the F2+ center in KCl crystal

    Get PDF

    Incorporating chemical signalling factors into cell-based models of growing epithelial tissues

    Get PDF
    In this paper we present a comprehensive computational framework within which the effects of chemical signalling factors on growing epithelial tissues can be studied. The method incorporates a vertex-based cell model, in conjunction with a solver for the governing chemical equations. The vertex model provides a natural mesh for the finite element method (FEM), with node movements determined by force laws. The arbitrary Lagrangian–Eulerian formulation is adopted to account for domain movement between iterations. The effects of cell proliferation and junctional rearrangements on the mesh are also examined. By implementing refinements of the mesh we show that the finite element (FE) approximation converges towards an accurate numerical solution. The potential utility of the system is demonstrated in the context of Decapentaplegic (Dpp), a morphogen which plays a crucial role in development of the Drosophila imaginal wing disc. Despite the presence of a Dpp gradient, growth is uniform across the wing disc. We make the growth rate of cells dependent on Dpp concentration and show that the number of proliferation events increases in regions of high concentration. This allows hypotheses regarding mechanisms of growth control to be rigorously tested. The method we describe may be adapted to a range of potential application areas, and to other cell-based models with designated node movements, to accurately probe the role of morphogens in epithelial tissues

    Direct observation of the flux-line vortex glass phase in a type II superconductor

    Full text link
    The order of the vortex state in La_{1.9} Sr_{0.1} CuO_{4} is probed using muon spin rotation and small-angle neutron scattering. A transition from a Bragg glass to a vortex glass is observed, where the latter is composed of disordered vortex lines. In the vicinity of the transition the microscopic behavior reflects a delicate interplay of thermally-induced and pinning-induced disorder.Comment: 14 pages, 4 colour figures include

    Avalanche dynamics, surface roughening and self-organized criticality - experiments on a 3 dimensional pile of rice

    Full text link
    We present a two-dimensional system which exhibits features of self-organized criticality. The avalanches which occur on the surface of a pile of rice are found to exhibit finite size scaling in their probability distribution. The critical exponents are τ\tau = 1.21(2) for the avalanche size distribution and DD = 1.99(2) for the cut-off size. Furthermore the geometry of the avalanches is studied leading to a fractal dimension of the active sites of dBd_B = 1.58(2). Using a set of scaling relations, we can calculate the roughness exponent α=D−dB\alpha = D - d_B = 0.41(3) and the dynamic exponent z=D(2−τ)z = D(2 - \tau) = 1.56(8). This result is compared with that obtained from a power spectrum analysis of the surface roughness, which yields α\alpha = 0.42(3) and zz = 1.5(1) in excellent agreement with those obtained from the scaling relations.Comment: 7 pages, 8 figures, accepted for publication in PR

    Solid state electrochromic display based on polymer electrode-polymer electrolyte interface

    Get PDF
    The electropolymerization of ortho-toluidine and ortho-anisidine gave uniform electroactive polymer films which were analysed by cyclic voltammetry, impedance and uv-vis absorption spectra. These films exhibit a reversible electrochemical response during cyclic voltammetry experiments in aqueous, non-aqueous and polymer electrolytes. Their electrochromic efficiency is high in aqueous and non-aqueous electrolytes but decreases in the polymer electrolyte. A solid state cell having the configuration ITO/TiO2-CeO2/LiN(SO2CF3)2-PEO complex/polymer/ITO, has been assembled. The transmittance variation of this system between the oxidized and reduced state is about 20% at 632.8 nm

    Mesoscale Modeling of the Meteorological Impacts of Irrigation during the 2012 Central Plains Drought

    Get PDF
    In the summer of 2012, the central plains of the United States experienced one of its most severe droughts on record. This study examines the meteorological impacts of irrigation during this drought through observations and model simulations using the Community Land Model coupled to the Weather Research and Forecasting (WRF) Model. A simple parameterization of irrigation processes is added into the WRF Model. In addition to keeping soil moisture in irrigated areas at a minimum of 50% of soil moisture hold capacity, this irrigation scheme has the following new features: 1) accurate representation of the spatial distribution of irrigation area in the study domain by using a MODIS-based land surface classification with 250-m pixel size and 2) improved representation of the time series of leaf area index (LAI) values derived from crop modeling and satellite observations in both irrigated and nonirrigated areas. Several numerical sensitivity experiments are conducted. The WRF-simulated temperature field when including soil moisture and LAI modification within the model is shown to be most consistent with ground and satellite observations, all indicating a temperature decrease of 2–3K in irrigated areas relative to the control run. Modification of LAI in irrigated and dryland areas led to smaller changes, with a 0.2-K temperature decrease in irrigated areas and up to a 0.5-K temperature increase in dryland areas. Furthermore, the increased soil moisture and modified LAI are shown to lead to statistically significant increases in surface divergence and surface pressure and to decreases in planetary boundary layer height over irrigated areas
    • …
    corecore