1,067 research outputs found

    Patronage Dividends: Income Distribution or Price Adjustment

    Get PDF

    Hard limits on the postselectability of optical graph states

    Get PDF
    Coherent control of large entangled graph states enables a wide variety of quantum information processing tasks, including error-corrected quantum computation. The linear optical approach offers excellent control and coherence, but today most photon sources and entangling gates---required for the construction of large graph states---are probabilistic and rely on postselection. In this work, we provide proofs and heuristics to aid experimental design using postselection. We derive a fundamental limitation on the generation of photonic qubit states using postselected entangling gates: experiments which contain a cycle of postselected gates cannot be postselected. Further, we analyse experiments that use photons from postselected photon pair sources, and lower bound the number of classes of graph state entanglement that are accessible in the non-degenerate case---graph state entanglement classes that contain a tree are are always accessible. Numerical investigation up to 9-qubits shows that the proportion of graph states that are accessible using postselection diminishes rapidly. We provide tables showing which classes are accessible for a variety of up to nine qubit resource states and sources. We also use our methods to evaluate near-term multi-photon experiments, and provide our algorithms for doing so.Comment: Our manuscript comprises 4843 words, 6 figures, 1 table, 47 references, and a supplementary material of 1741 words, 2 figures, 1 table, and a Mathematica code listin

    Full-scale aircraft simulation with cryogenic tunnels and status of the National Transonic Facility

    Get PDF
    The effect of thermal and caloric imperfections in cryogenic nitrogen on boundary layers was determined to indicate that in order to simulate nonadiabatic laminar or turbulent boundary layers in a cryogenic nitrogen wind tunnel, the flight enthalpy ratio, rather than the temperature ratio, should be reproduced. The absence of significant real gas effects on both viscous and inviscid flows makes it unlikely that there will be large real gas effects on the cryogenic tunnel simulation of shock boundary layer interactions or other complex flow conditions encountered in flight. Condensation effects were studied to determine the minimum usable temperature and indicated that under most circumstances free stream Mach number rather than maximum local Mach number determines the onset of condensation effects

    Mapping graph state orbits under local complementation

    Get PDF
    Graph states, and the entanglement they posses, are central to modern quantum computing and communications architectures. Local complementation---the graph operation that links all local-Clifford equivalent graph states---allows us to classify all stabiliser states by their entanglement. Here, we study the structure of the orbits generated by local complementation, mapping them up to 9 qubits and revealing a rich hidden structure. We provide programs to compute these orbits, along with our data for each of the 587 orbits up to 9 qubits and a means to visualise them. We find direct links between the connectivity of certain orbits with the entanglement properties of their component graph states. Furthermore, we observe the correlations between graph-theoretical orbit properties, such as diameter and colourability, with Schmidt measure and preparation complexity and suggest potential applications. It is well known that graph theory and quantum entanglement have strong interplay---our exploration deepens this relationship, providing new tools with which to probe the nature of entanglement

    Decision and function problems based on boson sampling

    Get PDF
    Boson sampling is a mathematical problem that is strongly believed to be intractable for classical computers, whereas passive linear interferometers can produce samples efficiently. So far, the problem remains a computational curiosity, and the possible usefulness of boson-sampling devices is mainly limited to the proof of quantum supremacy. The purpose of this work is to investigate whether boson sampling can be used as a resource of decision and function problems that are computationally hard, and may thus have cryptographic applications. After the definition of a rather general theoretical framework for the design of such problems, we discuss their solution by means of a brute-force numerical approach, as well as by means of non-boson samplers. Moreover, we estimate the sample sizes required for their solution by passive linear interferometers, and it is shown that they are independent of the size of the Hilbert space.Comment: Close to the version published in PR

    How does conformational flexibility influence key structural features involved in activation of anaplastic lymphoma kinase?

    Get PDF
    Anaplastic Lymphoma Kinase (ALK) plays a major role in developing tumor processes and therefore has emerged as a validated therapeutic target. Applying atomistic molecular dynamics simulations on the wild type enzyme and the nine most frequently occurring and clinically important activation mutants we revealed important conformational effects on key interactions responsible for the activation of the enzyme
    • …
    corecore