935 research outputs found

    A Hormonal Signaling Cascade During an Early Adult Critical Period Required for Courtship Memory Retention in Drosophila

    Get PDF
    Formation and expression of memories are critical for context-dependent decision making. In Drosophila, a courting male rejected by a mated female subsequently courts less avidly when paired with a virgin female, a behavioral modification attributed to “courtship memory.” Here we show the critical role of hormonal state for maintenance of courtship memory. Ecdysis-triggering hormone (ETH) is essential for courtship memory through regulation of juvenile hormone (JH) levels in adult males. Reduction of JH levels via silencing of ETH signaling genes impairs short-term courtship memory, a phenotype rescuable by the JH analog methoprene. JH-deficit-induced memory impairment involves rapid decay rather than failure of memory acquisition. A critical period governs memory performance during the first 3 days of adulthood. Using sex-peptide-expressing “pseudo-mated” trainers, we find that robust courtship memory elicited in the absence of aversive chemical mating cues also is dependent on ETH-JH signaling. Finally, we find that JH acts through dopaminergic neurons and conclude that an ETH-JH-dopamine signaling cascade is required during a critical period for promotion of social-context-dependent memory

    Estimating the Hospital Burden of Norovirus-Associated Gastroenteritis in England and Its Opportunity Costs for Nonadmitted Patients.

    Get PDF
    Background: Norovirus places a substantial burden on healthcare systems, arising from infected patients, disease outbreaks, beds kept unoccupied for infection control, and staff absences due to infection. In settings with high rates of bed occupancy, opportunity costs arise from patients who cannot be admitted due to beds being unavailable. With several treatments and vaccines against norovirus in development, quantifying the expected economic burden is timely. Methods: The number of inpatients with norovirus-associated gastroenteritis in England was modeled using infectious and noninfectious gastrointestinal Hospital Episode Statistics codes and laboratory reports of gastrointestinal pathogens collected at Public Health England. The excess length of stay from norovirus was estimated with a multistate model and local outbreak data. Unoccupied bed-days and staff absences were estimated from national outbreak surveillance. The burden was valued conventionally using accounting expenditures and wages, which we contrasted to the opportunity costs from forgone patients using a novel methodology. Results: Between July 2013 and June 2016, 17.7% (95% confidence interval [CI], 15.6%‒21.6%) of primary and 23.8% (95% CI, 20.6%‒29.9%) of secondary gastrointestinal diagnoses were norovirus attributable. Annually, the estimated median 290000 (interquartile range, 282000‒297000) occupied and unoccupied bed-days used for norovirus displaced 57800 patients. Conventional costs for the National Health Service reached £107.6 million; the economic burden approximated to £297.7 million and a loss of 6300 quality-adjusted life-years annually. Conclusions: In England, norovirus is now the second-largest contributor of the gastrointestinal hospital burden. With the projected impact being greater than previously estimated, improved capture of relevant opportunity costs seems imperative for diseases such as norovirus

    Integrated models, frameworks and decision support tools to guide management and planning in Northern Australia. Final report

    Get PDF
    [Extract] There is a lot of interest in developing northern Australia while also caring for the unique Australian landscape (Commonwealth of Australia 2015). However, trying to decide how to develop and protect at the same time can be a challenge. There are many modelling tools available to inform these decisions, including integrated models, frameworks, and decision support tools, but there are so many different kinds that it’s difficult to determine which might be best suited to inform different decisions. To support planning and development decisions across northern Australia, this project aimed to create resources to help end-users (practitioners) to assess: 1. the availability and suitability of particular modelling tools; and 2. the feasibility of using, developing, and maintaining different types of modelling tools

    GABA-ergic Dynamics in Human Frontotemporal Networks Confirmed by Pharmaco-Magnetoencephalography.

    Get PDF
    To bridge the gap between preclinical cellular models of disease and in vivo imaging of human cognitive network dynamics, there is a pressing need for informative biophysical models. Here we assess dynamic causal models (DCM) of cortical network responses, as generative models of magnetoencephalographic observations during an auditory oddball roving paradigm in healthy adults. This paradigm induces robust perturbations that permeate frontotemporal networks, including an evoked 'mismatch negativity' response and transiently induced oscillations. Here, we probe GABAergic influences in the networks using double-blind placebo-controlled randomized-crossover administration of the GABA reuptake inhibitor, tiagabine (oral, 10 mg) in healthy older adults. We demonstrate the facility of conductance-based neural mass mean-field models, incorporating local synaptic connectivity, to investigate laminar-specific and GABAergic mechanisms of the auditory response. The neuronal model accurately recapitulated the observed magnetoencephalographic data. Using parametric empirical Bayes for optimal model inversion across both drug sessions, we identify the effect of tiagabine on GABAergic modulation of deep pyramidal and interneuronal cell populations. We found a transition of the main GABAergic drug effects from auditory cortex in standard trials to prefrontal cortex in deviant trials. The successful integration of pharmaco- magnetoencephalography with dynamic causal models of frontotemporal networks provides a potential platform on which to evaluate the effects of disease and pharmacological interventions.SIGNIFICANCE STATEMENT Understanding human brain function and developing new treatments require good models of brain function. We tested a detailed generative model of cortical microcircuits that accurately reproduced human magnetoencephalography, to quantify network dynamics and connectivity in frontotemporal cortex. This approach identified the effect of a test drug (GABA-reuptake inhibitor, tiagabine) on neuronal function (GABA-ergic dynamics), opening the way for psychopharmacological studies in health and disease with the mechanistic precision afforded by generative models of the brain

    Effects of different segmentation methods on geometric morphometric data collection from primate skulls

    Get PDF
    1. An increasing number of studies are analysing the shapes of objects using geometric morphometrics with tomographic data, which are often segmented and transformed to three‐dimensional (3D) surface models before measurement. This study aimed to evaluate the effects of different image segmentation methods on geometric morphometric data collection using computed tomography data collected from non‐human primate skulls. 2. Three segmentation methods based on a visually selected threshold, a half‐maximum height protocol and a gradient and watershed algorithm were compared. For each method, the efficiency of surface reconstruction, the accuracy of landmark placement and the level of variation in shape and size compared with various levels of biological variation were evaluated. 3. The visual‐based method inflated the surface in high‐density anatomical regions, whereas the half‐maximum height protocol resulted in a large number of artificial holes and erosion. However, the gradient‐based method mitigated these issues and generated the most efficient surface model. The segmentation method used had a much smaller effect on shape and size variation than interspecific and inter‐individual differences. However, this effect was statistically significant and not negligible when compared with intra‐individual (fluctuating asymmetric) variation. 4. Although the gradient‐based method is not widely used in geometric morphometric analyses, it may be one of promising options for reconstructing 3D surfaces. When evaluating small variations, such as fluctuating asymmetry, care should be taken around combining 3D data that were obtained using different segmentation methods

    Cdc28/Cdk1 Regulates Spindle Pole Body Duplication through Phosphorylation of Spc42 and Mps1

    Get PDF
    AbstractDuplication of the Saccharomyces cerevisiae spindle pole body (SPB) once per cell cycle is essential for bipolar spindle formation and accurate chromosome segregation during mitosis. We have investigated the role that the major yeast cyclin-dependent kinase Cdc28/Cdk1 plays in assembly of a core SPB component, Spc42, to better understand how SPB duplication is coordinated with cell cycle progression. Cdc28 is required for SPB duplication and Spc42 assembly, and we found that Cdc28 directly phosphorylates Spc42 to promote its assembly into the SPB. The Mps1 kinase, previously shown to regulate Spc42 phosphorylation and assembly, is also a Cdc28 substrate, and Cdc28 phosphorylation of Mps1 is needed to maintain wild-type levels of Mps1 in cells. Analysis of nonphosphorylatable mutants in SPC42 and MPS1 indicates that direct Spc42 phosphorylation and indirect regulation of Spc42 through Mps1 are two overlapping pathways by which Cdc28 regulates Spc42 assembly and SPB duplication during the cell cycle

    GABAergic cortical network physiology in frontotemporal lobar degeneration.

    Get PDF
    The clinical syndromes caused by frontotemporal lobar degeneration are heterogeneous, including the behavioural variant frontotemporal dementia (bvFTD) and progressive supranuclear palsy. Although pathologically distinct, they share many behavioural, cognitive and physiological features, which may in part arise from common deficits of major neurotransmitters such as γ-aminobutyric acid (GABA). Here, we quantify the GABAergic impairment and its restoration with dynamic causal modelling of a double-blind placebo-controlled crossover pharmaco-magnetoencephalography study. We analysed 17 patients with bvFTD, 15 patients with progressive supranuclear palsy, and 20 healthy age- and gender-matched controls. In addition to neuropsychological assessment and structural MRI, participants undertook two magnetoencephalography sessions using a roving auditory oddball paradigm: once on placebo and once on 10 mg of the oral GABA reuptake inhibitor tiagabine. A subgroup underwent ultrahigh-field magnetic resonance spectroscopy measurement of GABA concentration, which was reduced among patients. We identified deficits in frontotemporal processing using conductance-based biophysical models of local and global neuronal networks. The clinical relevance of this physiological deficit is indicated by the correlation between top-down connectivity from frontal to temporal cortex and clinical measures of cognitive and behavioural change. A critical validation of the biophysical modelling approach was evidence from parametric empirical Bayes analysis that GABA levels in patients, measured by spectroscopy, were related to posterior estimates of patients' GABAergic synaptic connectivity. Further evidence for the role of GABA in frontotemporal lobar degeneration came from confirmation that the effects of tiagabine on local circuits depended not only on participant group, but also on individual baseline GABA levels. Specifically, the phasic inhibition of deep cortico-cortical pyramidal neurons following tiagabine, but not placebo, was a function of GABA concentration. The study provides proof-of-concept for the potential of dynamic causal modelling to elucidate mechanisms of human neurodegenerative disease, and explains the variation in response to candidate therapies among patients. The laminar- and neurotransmitter-specific features of the modelling framework, can be used to study other treatment approaches and disorders. In the context of frontotemporal lobar degeneration, we suggest that neurophysiological restoration in selected patients, by targeting neurotransmitter deficits, could be used to bridge between clinical and preclinical models of disease, and inform the personalized selection of drugs and stratification of patients for future clinical trials

    Neurophysiological consequences of synapse loss in progressive supranuclear palsy

    Get PDF
    Synaptic loss occurs early in many neurodegenerative diseases and contributes to cognitive impairment even in the absence of gross atrophy. Currently, for human disease there are few formal models to explain how cortical networks underlying cognition are affected by synaptic loss. We advocate that biophysical models of neurophysiology offer both a bridge from clinical to preclinical models of pathology, and quantitative assays for experimental medicine. Such biophysical models can also disclose hidden neuronal dynamics generating neurophysiological observations like electro- and magneto-encephalography. Here, we augment a biophysically informed mesoscale model of human cortical function by inclusion of synaptic density estimates as captured by [11C]UCB-J positron emission tomography, and provide insights into how regional synapse loss affects neurophysiology. We use the primary tauopathy of progressive supranuclear palsy (Richardson's syndrome) as an exemplar condition, with high clinicopathological correlations. Progressive supranuclear palsy causes a marked change in cortical neurophysiology in the presence of mild cortical atrophy and is associated with a decline in cognitive functions associated with the frontal lobe. Using parametric empirical Bayesian inversion of a conductance-based canonical microcircuit model of magnetoencephalography data, we show that the inclusion of regional synaptic density-as a subject-specific prior on laminar specific neuronal populations-markedly increases model evidence. Specifically, model comparison suggests that a reduction in synaptic density in inferior frontal cortex affects superficial and granular layer glutamatergic excitation. This predicted individual differences in behaviour, demonstrating the link between synaptic loss, neurophysiology, and cognitive deficits. The method we demonstrate is not restricted to progressive supranuclear palsy or the effects of synaptic loss: such pathology-enriched dynamic causal models can be used to assess the mechanisms of other neurological disorders, with diverse non-invasive measures of pathology, and is suitable to test the effects of experimental pharmacology
    corecore