57 research outputs found

    Comment on "Diffusion Monte Carlo study of jellium surfaces: Electronic densities and pair correlation functions"

    Full text link
    In a fixed-node diffusion Monte Carlo calculation of the total energy of jellium slabs, Acioli and Ceperley [Phys. Rev. B {\bf 54}, 17199 (1996)] reported jellium surface energies that at low electron densities were significantly higher than those predicted in the local-density approximation (LDA) of density-functional theory. Assuming that the fixed-node error in the slab and the bulk calculations cancel out, we show that their data yield surface energies that are considerably closer to the LDA and in reasonable agreement with those obtained in the random-phase approximation.Comment: 3 pages, 2 figures, to appear in Phys. Rev.

    Correlation energies of inhomogeneous many-electron systems

    Full text link
    We generalize the uniform-gas correlation energy formalism of Singwi, Tosi, Land and Sjolander to the case of an arbitrary inhomogeneous many-particle system. For jellium slabs of finite thickness with a self-consistent LDA groundstate Kohn-Sham potential as input, our numerical results for the correlation energy agree well with diffusion Monte Carlo results. For a helium atom we also obtain a good correlation energy.Comment: 4 pages,1 figur

    Quantum Monte Carlo calculations of the one-body density matrix and excitation energies of silicon

    Full text link
    Quantum Monte Carlo (QMC) techniques are used to calculate the one-body density matrix and excitation energies for the valence electrons of bulk silicon. The one-body density matrix and energies are obtained from a Slater-Jastrow wave function with a determinant of local density approximation (LDA) orbitals. The QMC density matrix evaluated in a basis of LDA orbitals is strongly diagonally dominant. The natural orbitals obtained by diagonalizing the QMC density matrix resemble the LDA orbitals very closely. Replacing the determinant of LDA orbitals in the wave function by a determinant of natural orbitals makes no significant difference to the quality of the wave function's nodal surface, leaving the diffusion Monte Carlo energy unchanged. The Extended Koopmans' Theorem for correlated wave functions is used to calculate excitation energies for silicon, which are in reasonable agreement with the available experimental data. A diagonal approximation to the theorem, evaluated in the basis of LDA orbitals, works quite well for both the quasihole and quasielectron states. We have found that this approximation has an advantageous scaling with system size, allowing more efficient studies of larger systems.Comment: 13 pages, 4 figures. To appear in Phys. Rev.

    Two-dimensional limit of exchange-correlation energy functional approximations in density functional theory

    Full text link
    We investigate the behavior of three-dimensional (3D) exchange-correlation energy functional approximations of density functional theory in anisotropic systems with two-dimensional (2D) character. Using two simple models, quasi-2D electron gas and two-electron quantum dot, we show a {\it fundamental limitation} of the local density approximation (LDA), and its semi-local extensions, generalized gradient approximation (GGA) and meta-GGA (MGGA), the most widely used forms of which are worse than the LDA in the strong 2D limit. The origin of these shortcomings is in the inability of the local (LDA) and semi-local (GGA/MGGA) approximations to describe systems with 2D character in which the nature of the exchange-correlation hole is very nonlocal. Nonlocal functionals provide an alternative approach, and explicitly the average density approximation (ADA) is shown to be remarkably accurate for the quasi-2D electron gas system. Our study is not only relevant for understanding of the functionals but also practical applications to semiconductor quantum structures and materials such as graphite and metal surfaces. We also comment on the implication of our findings to the practical device simulations based on the (semi-)local density functional method.Comment: 21 pages including 9 figures, to be published in Phys. Rev.

    Correlation energy of a two-dimensional electron gas from static and dynamic exchange-correlation kernels

    Full text link
    We calculate the correlation energy of a two-dimensional homogeneous electron gas using several available approximations for the exchange-correlation kernel fxc(q,ω)f_{\rm xc}(q,\omega) entering the linear dielectric response of the system. As in the previous work of Lein {\it et al.} [Phys. Rev. B {\bf 67}, 13431 (2000)] on the three-dimensional electron gas, we give attention to the relative roles of the wave number and frequency dependence of the kernel and analyze the correlation energy in terms of contributions from the (q,iω)(q, i\omega) plane. We find that consistency of the kernel with the electron-pair distribution function is important and in this case the nonlocality of the kernel in time is of minor importance, as far as the correlation energy is concerned. We also show that, and explain why, the popular Adiabatic Local Density Approximation performs much better in the two-dimensional case than in the three-dimensional one.Comment: 9 Pages, 4 Figure

    Alternative Complement Pathway Deregulation Is Correlated with Dengue Severity

    Get PDF
    BACKGROUND:The complement system, a key component that links the innate and adaptive immune responses, has three pathways: the classical, lectin, and alternative pathways. In the present study, we have analyzed the levels of various complement components in blood samples from dengue fever (DF) and dengue hemorrhagic fever (DHF) patients and found that the level of complement activation is associated with disease severity. METHODS AND RESULTS:Patients with DHF had lower levels of complement factor 3 (C3; p = 0.002) and increased levels of C3a, C4a and C5a (p<0.0001) when compared to those with the less severe form, DF. There were no significant differences between DF and DHF patients in the levels of C1q, immunocomplexes (CIC-CIq) and CRP. However, small but statistically significant differences were detected in the levels of MBL. In contrast, the levels of two regulatory proteins of the alternative pathway varied widely between DF and DHF patients: DHF patients had higher levels of factor D (p = 0.01), which cleaves factor B to yield the active (C3bBb) C3 convertase, and lower levels of factor H (p = 0.03), which inactivates the (C3bBb) C3 convertase, than did DF patients. When we considered the levels of factors D and H together as an indicator of (C3bBb) C3 convertase regulation, we found that the plasma levels of these regulatory proteins in DHF patients favored the formation of the (C3bBb) C3 convertase, whereas its formation was inhibited in DF patients (p<0.0001). CONCLUSION:The data suggest that an imbalance in the levels of regulatory factors D and H is associated with an abnormal regulation of complement activity in DHF patients

    Quantum Monte Carlo simulations of solids

    No full text
    Published versio

    Optics and Quantum Electronics

    Get PDF
    Contains table of contents for Section 3, reports on twenty-one research projects and a list of publications and meeting papers.Joint Services Electronics Program Contract DAAL03-92-C-0001U.S. Air Force - Office of Scientific Research Contract F49620-91-C-0091Charles S. Draper Laboratories Contract DL-H-441692MIT Lincoln LaboratoryNational Science Foundation Grant ECS 90-12787Fujitsu LaboratoriesU.S. Navy - Office of Naval Research Grant N00014-92-J-1302National Center for Integrated Photonic TechnologyNational Science Foundation Grant ECS 85-52701U.S. Navy - Office of Naval Research (MFEL) Grant N00014-91-C-0084U.S. Navy - Office of Naval Research (MFEL) Grant N00014-91-J-1956National Institutes of Health Grant R01-GM35459-08U.S. Air Force - Office of Scientific Research Grant F49620-93-1-0301MIT Lincoln Laboratory Contract BX-5098Electric Power Research Institute Contract RP3170-2

    Optics and Quantum Electronics

    Get PDF
    Contains table of contents for Section 2 and reports on eleven research projects.Joint Services Electronics Program Contract DAAL03-89-C-0001National Science Foundation Grant EET 87-00474U.S. Air Force - Office of Scientific Research Contract F49620-88-C-0089Charles S. Draper Laboratory Contract DL-H-404179National Center for Integrated PhotonicsNational Science Foundation Grant ECS 87-18417NEC Research InstituteNational Science Foundation Grant ECS 85-52701Medical Free Electron Laser Program Contract N00014-86-K-0117National Institutes of Health Grant 5-RO1-GM35459Lawrence Livermore National Laboratory Contract B048704U.S. Department of Energy Grant DE-FG02-89-ER14012Columbia University Contract P016310
    • …
    corecore