16 research outputs found

    Distributed soil displacement and pressure associated with surface loading

    Get PDF
    Soil compaction is an inevitable result of agricultural practices. It alters physical properties of soil and tends to be undesirable as it adversely affects water and nutrient penetration. Furthermore, additional energy is spent to till the soil. Although a tremendous amount of research has been conducted in the area of soil compaction, the focus has been primarily on surface soil displacement. Realizing that the observed soil displacement is the cumulative effect from the compaction of subsurface layers, this research discusses the displacement and distributed pressure through the soil from a surface load. A given volume of soil of known density and moisture content was loaded at the surface with a slowly applied force using an Instron® testing machine. The distribution of the pressure and displacement profile from the surface to depth was measured to provide insight into the formation of the subsurface soil structures. The nonlinear exponential decay of the soil displacement (compaction) from the surface to a given depth converges to zero at the location of a hard, compact layer or a point where no soil movement occurs, regardless of the initial soil compaction. By increasing soil moisture content and decreasing soil bulk density, the vertical soil displacement increased at the surface and within the soil profile, and the pressure distribution decreased with depth. Changing the shape of loading surface had minimal effect on soil displacement

    Phenylalanine-Rich Peptides Potently Bind ESAT6, a Virulence Determinant of Mycobacterium tuberculosis, and Concurrently Affect the Pathogen's Growth

    Get PDF
    BACKGROUND:The secretory proteins of Mycobacterium tuberculosis (M. tuberculosis) have been known to be involved in the virulence, pathogenesis as well as proliferation of the pathogen. Among this set, many proteins have been hypothesized to play a critical role at the genesis of the onset of infection, the primary site of which is invariably the human lung. METHODOLOGY/PRINCIPAL FINDINGS:During our efforts to isolate potential binding partners of key secretory proteins of M. tuberculosis from a human lung protein library, we isolated peptides that strongly bound the virulence determinant protein Esat6. All peptides were less than fifty amino acids in length and the binding was confirmed by in vivo as well as in vitro studies. Curiously, we found all three binders to be unusually rich in phenylalanine, with one of the three peptides a short fragment of the human cytochrome c oxidase-3 (Cox-3). The most accessible of the three binders, named Hcl1, was shown also to bind to the Mycobacterium smegmatis (M. smegmatis) Esat6 homologue. Expression of hcl1 in M. tuberculosis H37Rv led to considerable reduction in growth. Microarray analysis showed that Hcl1 affects a host of key cellular pathways in M. tuberculosis. In a macrophage infection model, the sets expressing hcl1 were shown to clear off M. tuberculosis in much greater numbers than those infected macrophages wherein the M. tuberculosis was not expressing the peptide. Transmission electron microscopy studies of hcl1 expressing M. tuberculosis showed prominent expulsion of cellular material into the matrix, hinting at cell wall damage. CONCLUSIONS/SIGNIFICANCE:While the debilitating effects of Hcl1 on M. tuberculosis are unrelated and not because of the peptide's binding to Esat6-as the latter is not an essential protein of M. tuberculosis-nonetheless, further studies with this peptide, as well as a closer inspection of the microarray data may shed important light on the suitability of such small phenylalanine-rich peptides as potential drug-like molecules against this pathogen

    Combination of the W boson polarization measurements in top quark decays using ATLAS and CMS data at \sqrt{s} = 8 TeV

    Get PDF
    The combination of measurements of the W boson polarization in top quark decays performed by the ATLAS and CMS collaborations is presented. The measurements are based on proton-proton collision data produced at the LHC at a centre-of-mass energy of 8 TeV, and corresponding to an integrated luminosity of about 20 fb^{-1} for each experiment. The measurements used events containing one lepton and having different jet multiplicities in the final state. The results are quoted as fractions of W bosons with longitudinal (F_{0}), left-handed (F_{L}), or right-handed (F_{R}) polarizations. The resulting combined measurements of the polarization fractions are F0 = 0.693 ± 0.014 and FL = 0.315 ± 0.011. The fraction F_{R} is calculated from the unitarity constraint to be F_{R} = −0.008 ± 0.007. These results are in agreement with the standard model predictions at next-to-next-to-leading order in perturbative quantum chromodynamics and represent an improvement in precision of 25 (29)% for F_{o} (F_{L}) with respect to the most precise single measurement. A limit on anomalous right-handed vector (VR), and left- and right-handed tensor (g_{L}, g_{R})tWb couplings is set while fixing all others to their standard model values. The allowed regions are [−0.11, 0.16] for V_{R}, [−0.08, 0.05] for g_{L}, and [−0.04, 0.02] for g_{R}, at 95% confidence level. Limits on the corresponding Wilson coefficients are also derived

    Time and sciences

    No full text
    183 p., tabl., ref. bib. : dissem.These essays constitute the third of a series aimed at establishing communication between contemporary cultures through studies of fundamental concepts that are not only immediately evident in daily life but are central also to any form of systematic and comprehensive view of the world. They are based on papers presented at an expert meeting, Time and the Sciences: Impact of Scientific Expressions of Time on Differing Cultures, held at the Royal Institution in London

    MICAL-like1 mediates epidermal growth factor receptor endocytosis

    No full text
    MICAL-like1 (MICAL-L1), a Rab13 effector, is associated with late endosomes and regulates epidermal growth factor receptor trafficking. The N-terminal calponin (CH) domain associates with the C-terminal Rab13 binding domain (RBD) of MICAL-L1. The binding of Rab13 to RBD disrupts the CH/RBD interaction and may induce a conformational change in MICAL-L1, promoting its activation
    corecore