90 research outputs found

    Hydroxyurea differentially modulates activator and repressors of γ-globin gene in erythroblasts of responsive and non-responsive patients with sickle cell disease in correlation with Index of Hydroxyurea Responsiveness

    Get PDF
    Hydroxyurea (HU), the first of two drugs approved by the US Food and Drug Administration for treating patients with sickle cell disease (SCD), produces anti-sickling effect by re-activating fetal γ-globin gene to enhance production of fetal hemoglobin. However, approximately 30% of the patients do not respond to HU therapy. The molecular basis of non-responsiveness to HU is not clearly understood. To address this question, we examined HU-induced changes in the RNA and protein levels of transcription factors NF-Y, GATA-1, -2, BCL11A, TR4, MYB and NF-E4 that assemble the γ-globin promoter complex and regulate transcription of γ-globin gene. In erythroblasts cultured from peripheral blood CD34+ cells of patients with SCD, we found that HU-induced changes in the protein but not the RNA levels of activator GATA-2 and repressors GATA-1, BCL11A and TR4 correlated with HU-induced changes in fetal hemoglobin (HbF) levels in the peripheral blood of HU high and low responders. However, HU did not significantly induce changes in the protein or RNA levels of activators NF-Y and NF-E4. Based on HU-induced changes in the protein levels of GATA-2, -1 and BCL11A, we calculated an Index of Hydroxyurea Responsiveness (IndexHU-3). Compared to the HU-induced fold changes in the individual transcription factor protein levels, the numerical values of IndexHU-3 statistically correlated best with the HU-induced peripheral blood HbF levels of the patients. Thus, IndexHU-3 can serve as an appropriate indicator for inherent HU responsiveness of patients with SCD

    CB1R-Mediated Activation of Caspase-3 Causes Epigenetic and Neurobehavioral Abnormalities in Postnatal Ethanol-Exposed Mice

    Get PDF
    Alcohol exposure can affect brain development, leading to long-lasting behavioral problems, including cognitive impairment, which together is defined as fetal alcohol spectrum disorder (FASD). However, the fundamental mechanisms through which this occurs are largely unknown. In this study, we report that the exposure of postnatal day 7 (P7) mice to ethanol activates caspase-3 via cannabinoid receptor type-1 (CB1R) in neonatal mice and causes a reduction in methylated DNA binding protein (MeCP2) levels. The developmental expression of MeCP2 in mice is closely correlated with synaptogenesis and neuronal maturation. It was shown that ethanol treatment of P7 mice enhanced Mecp2 mRNA levels but reduced protein levels. The genetic deletion of CB1R prevented, and administration of a CB1R antagonist before ethanol treatment of P7 mice inhibited caspase-3 activation. Additionally, it reversed the loss of MeCP2 protein, cAMP response element binding protein (CREB) activation, and activity-regulated cytoskeleton-associated protein (Arc) expression. The inhibition of caspase-3 activity prior to ethanol administration prevented ethanol-induced loss of MeCP2, CREB activation, epigenetic regulation of Arc expression, long-term potentiation (LTP), spatial memory deficits and activity-dependent impairment of several signaling molecules, including MeCP2, in adult mice. Collectively, these results reveal that the ethanol-induced CB1R-mediated activation of caspase-3 degrades the MeCP2 protein in the P7 mouse brain and causes long-lasting neurobehavioral deficits in adult mice. This CB1R-mediated instability of MeCP2 during active synaptic maturation may disrupt synaptic circuit maturation and lead to neurobehavioral abnormalities, as observed in this animal model of FASD

    Coagulation activation in sickle cell trait: an exploratory study

    Get PDF
    Recent epidemiologic data suggest that sickle cell trait (HbAS; AS) is a risk factor for venous thromboembolism. We conducted an exploratory study of healthy subjects with AS under baseline conditions to determine whether a chronic basal hyperactivation of coagulation exists, and if so, what mechanism(s) contribute to this state. Eighteen healthy AS individuals were compared to 22 African-American controls with a normal haemoglobin profile (HbAA; AA) and 17 patients with sickle cell disease (HbSS; SS). Plasma thrombin-antithrombin complexes and D-dimer levels were elevated in AS relative to AA patients (P = 0.0385 and P = 0.017, respectively), and as expected, were much higher in SS versus AA (P < 0.0001 for both). Thrombin generation in platelet poor plasma was indistinguishable between AA and AS subjects, whereas a paradoxical decrease in endogenous thrombin potential was observed in SS (P ≤ 0.0001). Whole blood tissue factor was elevated in SS compared to AA (P = 0.005), but did not differ between AA and AS. Plasma microparticle tissue factor activity was non-significantly elevated in AS (P = 0.051), but was clearly elevated in SS patients (P = 0.004) when compared to AA controls. Further studies in larger cohorts of subjects with sickle cell trait are needed to confirm the results of this preliminary investigation

    Crizanlizumab for the Prevention of Pain Crises in Sickle Cell Disease

    Get PDF
    The up-regulation of P-selectin in endothelial cells and platelets contributes to the cell–cell interactions that are involved in the pathogenesis of vaso-occlusion and sickle cell–related pain crises. The safety and efficacy of crizanlizumab, an antibody against the adhesion molecule P-selectin, were evaluated in patients with sickle cell disease

    A phase 1/2 trial of HQK-1001, an oral fetal globin inducer, in sickle cell disease

    Get PDF
    Therapeutics which reduce the pathology in sickle cell syndromes are needed, particularly non-cytotoxic therapeutics. Fetal hemoglobin (HbF, α2γ2) is established as a major regulator of disease severity; increased HbF levels correlate with milder clinical courses and improved survival. Accordingly, sodium dimethylbutyrate (HQK-1001), an orally-bioavailable, promoter-targeted fetal globin gene-inducing agent, was evaluated in a randomized, blinded, dose-ranging Phase I/II trial in 24 adult patients with HbSS or S/β thalassemia, to determine safety and tolerability of three escalating dose levels. The study therapeutic was administered once daily for two 6-week cycles, with a 2-week interim dose holiday. Twenty-one patients completed the study. Five patients received study drug at 10 or 20 mg/kg doses, seven patients received study drug at 30 mg/kg/dose, and 4 patients received placebo. HQK-1001 was well-tolerated with no unexpected drug-related adverse events; a dose-limiting toxicity was not identified. Plasma drug levels were sustained above targeted levels for 24 hours. Increases in HbF above baseline were observed particularly with 30 mg/kg/day doses; in five of seven treated patients, a mean absolute increase in HbF of 0.2 g/dl and a mean increase in total hemoglobin (Hgb) of 0.83 g/dl above baseline were observed, whereas no increases occurred in placebo-treated controls. These findings of favorable PK profiles, tolerability, early rises in HbF and total Hgb indicate that trials of longer duration appear warranted to more definitively evaluate the therapeutic potential of HQK-1001 in sickle cell disease

    Genetic risk factors for cerebrovascular disease in children with sickle cell disease: design of a case-control association study and genomewide screen

    Get PDF
    BACKGROUND: The phenotypic heterogeneity of sickle cell disease is likely the result of multiple genetic factors and their interaction with the sickle mutation. High transcranial doppler (TCD) velocities define a subgroup of children with sickle cell disease who are at increased risk for developing ischemic stroke. The genetic factors leading to the development of a high TCD velocity (i.e. cerebrovascular disease) and ultimately to stroke are not well characterized. METHODS: We have designed a case-control association study to elucidate the role of genetic polymorphisms as risk factors for cerebrovascular disease as measured by a high TCD velocity in children with sickle cell disease. The study will consist of two parts: a candidate gene study and a genomewide screen and will be performed in 230 cases and 400 controls. Cases will include 130 patients (TCD ≥ 200 cm/s) randomized in the Stroke Prevention Trial in Sickle Cell Anemia (STOP) study as well as 100 other patients found to have high TCD in STOP II screening. Four hundred sickle cell disease patients with a normal TCD velocity (TCD < 170 cm/s) will be controls. The candidate gene study will involve the analysis of 28 genetic polymorphisms in 20 candidate genes. The polymorphisms include mutations in coagulation factor genes (Factor V, Prothrombin, Fibrinogen, Factor VII, Factor XIII, PAI-1), platelet activation/function (GpIIb/IIIa, GpIb IX-V, GpIa/IIa), vascular reactivity (ACE), endothelial cell function (MTHFR, thrombomodulin, VCAM-1, E-Selectin, L-Selectin, P-Selectin, ICAM-1), inflammation (TNFα), lipid metabolism (Apo A1, Apo E), and cell adhesion (VCAM-1, E-Selectin, L-Selectin, P-Selectin, ICAM-1). We will perform a genomewide screen of validated single nucleotide polymorphisms (SNPs) in pooled DNA samples from 230 cases and 400 controls to study the possible association of additional polymorphisms with the high-risk phenotype. High-throughput SNP genotyping will be performed through MALDI-TOF technology using Sequenom's MassARRAY™ system. DISCUSSION: It is expected that this study will yield important information on genetic risk factors for the cerebrovascular disease phenotype in sickle cell disease by clarifying the role of candidate genes in the development of high TCD. The genomewide screen for a large number of SNPs may uncover the association of novel polymorphisms with cerebrovascular disease and stroke in sickle cell disease

    A Multilevel Mhealth intervention Boosts adherence to Hydroxyurea in individuals With Sickle Cell Disease

    Get PDF
    Hydroxyurea reduces sickle cell disease (SCD) complications, but medication adherence is low. We tested 2 mobile health (mHealth) interventions targeting determinants of low adherence among patients (InCharge Health) and low prescribing among providers (HU toolbox) in a multi-center, non-randomized trial of individuals with SCD ages 15-45. We compared the percentage of days covered (PDC), labs, healthcare utilization, and self-reported pain over 24 weeks of intervention and 12 weeks post-study with a 24-week preintervention interval. We enrolled 293 patients (51% male; median age 27.5 years, 86.8% HbSS/HbSβ0-thalassemia). The mean change in PDC among 235 evaluable subjects increased (39.7% to 56.0%; P \u3c 0.001) and sustained (39.7% to 51.4%, P \u3c 0.001). Mean HbF increased (10.95% to 12.78%; P = 0.03). Self-reported pain frequency reduced (3.54 to 3.35 events/year; P = 0.041). InCharge Health was used ≥1 day by 199 of 235 participants (84.7% implementation; median usage: 17% study days; IQR: 4.8-45.8%). For individuals with ≥1 baseline admission for pain, admissions per 24 weeks declined from baseline through 24 weeks (1.97 to 1.48 events/patient, P = 0.0045) and weeks 25-36 (1.25 events/patient, P = 0.0015). PDC increased with app use (P \u3c 0.001), with the greatest effect in those with private insurance (P = 0.0078), older subjects (P = 0.033), and those with lower pain interference (P = 0.0012). Of the 89 providers (49 hematologists, 36 advanced care providers, 4 unreported), only 11.2% used HU toolbox ≥1/month on average. This use did not affect change in PDC. Tailoring mHealth solutions to address barriers to hydroxyurea adherence can potentially improve adherence and provide clinical benefits. A definitive randomized study is warranted. This trial was registered at www.clinicaltrials.gov as #NCT04080167

    Genetic Association for Renal Traits among Participants of African Ancestry Reveals New Loci for Renal Function

    Get PDF
    Chronic kidney disease (CKD) is an increasing global public health concern, particularly among populations of African ancestry. We performed an interrogation of known renal loci, genome-wide association (GWA), and IBC candidate-gene SNP association analyses in African Americans from the CARe Renal Consortium. In up to 8,110 participants, we performed meta-analyses of GWA and IBC array data for estimated glomerular filtration rate (eGFR), CKD (eGFR <60 mL/min/1.73 m2), urinary albumin-to-creatinine ratio (UACR), and microalbuminuria (UACR >30 mg/g) and interrogated the 250 kb flanking region around 24 SNPs previously identified in European Ancestry renal GWAS analyses. Findings were replicated in up to 4,358 African Americans. To assess function, individually identified genes were knocked down in zebrafish embryos by morpholino antisense oligonucleotides. Expression of kidney-specific genes was assessed by in situ hybridization, and glomerular filtration was evaluated by dextran clearance. Overall, 23 of 24 previously identified SNPs had direction-consistent associations with eGFR in African Americans, 2 of which achieved nominal significance (UMOD, PIP5K1B). Interrogation of the flanking regions uncovered 24 new index SNPs in African Americans, 12 of which were replicated (UMOD, ANXA9, GCKR, TFDP2, DAB2, VEGFA, ATXN2, GATM, SLC22A2, TMEM60, SLC6A13, and BCAS3). In addition, we identified 3 suggestive loci at DOK6 (p-value = 5.3×10−7) and FNDC1 (p-value = 3.0×10−7) for UACR, and KCNQ1 with eGFR (p = 3.6×10−6). Morpholino knockdown of kcnq1 in the zebrafish resulted in abnormal kidney development and filtration capacity. We identified several SNPs in association with eGFR in African Ancestry individuals, as well as 3 suggestive loci for UACR and eGFR. Functional genetic studies support a role for kcnq1 in glomerular development in zebrafish

    Combined admixture mapping and association analysis identifies a novel blood pressure genetic locus on 5p13: contributions from the CARe consortium

    Get PDF
    Admixture mapping based on recently admixed populations is a powerful method to detect disease variants with substantial allele frequency differences in ancestral populations. We performed admixture mapping analysis for systolic blood pressure (SBP) and diastolic blood pressure (DBP), followed by trait-marker association analysis, in 6303 unrelated African-American participants of the Candidate Gene Association Resource (CARe) consortium. We identified five genomic regions (P< 0.001) harboring genetic variants contributing to inter-individual BP variation. In follow-up association analyses, correcting for all tests performed in this study, three loci were significantly associated with SBP and one significantly associated with DBP (P< 10−5). Further analyses suggested that six independent single-nucleotide polymorphisms (SNPs) contributed to the phenotypic variation observed in the admixture mapping analysis. These six SNPs were examined for replication in multiple, large, independent studies of African-Americans [Women's Health Initiative (WHI), Maywood, Genetic Epidemiology Network of Arteriopathy (GENOA) and Howard University Family Study (HUFS)] as well as one native African sample (Nigerian study), with a total replication sample size of 11 882. Meta-analysis of the replication set identified a novel variant (rs7726475) on chromosome 5 between the SUB1 and NPR3 genes, as being associated with SBP and DBP (P< 0.0015 for both); in meta-analyses combining the CARe samples with the replication data, we observed P-values of 4.45 × 10−7 for SBP and 7.52 × 10−7 for DBP for rs7726475 that were significant after accounting for all the tests performed. Our study highlights that admixture mapping analysis can help identify genetic variants missed by genome-wide association studies because of drastically reduced number of tests in the whole genome
    • …
    corecore