33 research outputs found

    An overview of mechanical circulatory support in single-ventricle patients

    Get PDF
    The population of people with a single-ventricle is continually increasing due to improvements across the spectrum of medical care. Unfortunately, a proportion of these patients will develop heart failure. Often, for these patients, mechanical circulatory support (MCS) represents the only available treatment option. While single-ventricle patients currently represent a small proportion of the total number of patients who receive MCS, as the single-ventricle patient population increases, this number will increase as well. Outcomes for these complex single-ventricle patients who require MCS has begun to be evaluated. When considering the entire population, survival to hospital discharge is 30-50%, though this must be considered with the significant heterogeneity of the single-ventricle patient population. Patients with a single-ventricle have unique anatomy, mechanisms of failure, indications for MCS and the type of support utilized. This has made the interpretation and the generalizability of the limited available data difficult. It is likely that some subsets will have a significantly worse prognosis and others a better one. Unfortunately, with these limited data, indications of a favorable or poor outcome have not yet been elucidated. Though currently, a database has been constructed to address this issue. While the outcomes for these complex patients is unclear, at least in some situations, they are poor. However, significant advances may provide improvements going forward, including new devices, computer simulations and 3D printed models. The most important factor, however, will be the increased experience gained by the heart failure team to improve patient selection, timing, device and configuration selection and operative approach

    Trends in Pediatric Appendectomy Outcomes

    No full text

    Can ARC Save the Heart?

    No full text

    High glucose concentration in cell culture medium does not acutely affect human mesenchymal stem cell growth factor production or proliferation

    No full text
    Optimizing the function and proliferative capacity of stem cells is essential to maximize their therapeutic benefits. High glucose concentrations are known to have detrimental effects on many cell types. We hypothesized that human mesenchymal stem cells (hMSCs) cultured in high glucose-containing media would exhibit diminished proliferation and attenuated production of VEGF, hepatocyte growth factor (HGF), and FGF2 in response to treatment with TNF-Ξ±, LPS, or hypoxia. hMSCs were plated in medium containing low (5.5 mM) and high (20 mM or 30 mM) glucose concentrations and treated with TNF-Ξ±, LPS, or hypoxia. Supernatants were collected at 24 and 48 h and assayed via ELISA for VEGF, HGF, and FGF2. In addition, hMSCs were cultured on 96-well plates at the above glucose concentrations, and proliferation at 48 h was determined via bromo-2β€²-deoxy-uridine (BrdU) incorporation. At 24 and 48 h, TNF-Ξ±, LPS, and hypoxia-treated hMSCs produced significantly higher VEGF, HGF, and FGF2 compared with control. Hypoxia-induced VEGF production by hMSCs was the most pronounced change over baseline. At both 24 and 48 h, glucose concentration did not affect production of VEGF, HGF, or FGF2 by untreated hMSCs and those treated with TNF-Ξ±, LPS, or hypoxia. Proliferation of hMSCs as determined via BrdU incorporation was unaffected by glucose concentration of the media. Contrary to what has been observed with other cells, hMSCs may be resistant to the short-term effects of high glucose. Ongoing efforts to characterize and optimize ex vivo and in vivo conditions are critical if the therapeutic benefits of MSCs are to be maximized

    TLR4 inhibits mesenchymal stem cell (MSC) STAT3 activation and thereby exerts deleterious effects on MSC-mediated cardioprotection.

    Get PDF
    Bone marrow-derived mesenchymal stem cells (MSC) improve myocardial recovery after ischemia/reperfusion (I/R) injury. These effects are mediated in part by the paracrine secretion of angiogenic and tissue growth-promoting factors. Toll-like receptor 4 (TLR4) is expressed by MSC and induces apoptosis and inhibits proliferation in neuronal progenitors as well as many other cell types. It is unknown whether knock-out (KO) of TLR4 will change the paracrine properties of MSC and in turn improve MSC-associated myocardial protection.This study explored the effect of MSC TLR4 on the secretion of angiogenic factors and chemokines in vitro by using ELISA and cytokine array assays and investigated the role of TLR4 on MSC-mediated myocardial recovery after I/R injury in an isolated rat heart model. We observed that MSC isolated from TLR4 KO mice exhibited a greater degree of cardioprotection in a rat model of myocardial I/R injury. This enhanced protection was associated with increased angiogenic factor production, proliferation and differentiation. TLR4-deficiency was also associated with decreased phosphorylation of PI-3K and AKT, but increased activation of STAT3. siRNA targeting of STAT3 resulted in attenuation of the enhanced cardioprotection of TLR4-deficient MSC.This study indicates that TLR4 exerts deleterious effects on MSC-derived cardioprotection following I/R by a STAT3 inhibitory mechanism
    corecore