5,043 research outputs found
The characterization of a new set of EST-derived simple sequence repeat (SSR) markers as a resource for the genetic analysis of Phaseolus vulgaris
<p>Abstract</p> <p>Background</p> <p>Over recent years, a growing effort has been made to develop microsatellite markers for the genomic analysis of the common bean (<it>Phaseolus vulgaris</it>) to broaden the knowledge of the molecular genetic basis of this species. The availability of large sets of expressed sequence tags (ESTs) in public databases has given rise to an expedient approach for the identification of SSRs (Simple Sequence Repeats), specifically EST-derived SSRs. In the present work, a battery of new microsatellite markers was obtained from a search of the <it>Phaseolus vulgaris </it>EST database. The diversity, degree of transferability and polymorphism of these markers were tested.</p> <p>Results</p> <p>From 9,583 valid ESTs, 4,764 had microsatellite motifs, from which 377 were used to design primers, and 302 (80.11%) showed good amplification quality. To analyze transferability, a group of 167 SSRs were tested, and the results showed that they were 82% transferable across at least one species. The highest amplification rates were observed between the species from the <it>Phaseolus </it>(63.7%), <it>Vigna </it>(25.9%), <it>Glycine </it>(19.8%), <it>Medicago </it>(10.2%), <it>Dipterix </it>(6%) and <it>Arachis </it>(1.8%) genera. The average PIC (Polymorphism Information Content) varied from 0.53 for genomic SSRs to 0.47 for EST-SSRs, and the average number of alleles per locus was 4 and 3, respectively. Among the 315 newly tested SSRs in the BJ (BAT93 X Jalo EEP558) population, 24% (76) were polymorphic. The integration of these segregant loci into a framework map composed of 123 previously obtained SSR markers yielded a total of 199 segregant loci, of which 182 (91.5%) were mapped to 14 linkage groups, resulting in a map length of 1,157 cM.</p> <p>Conclusions</p> <p>A total of 302 newly developed EST-SSR markers, showing good amplification quality, are available for the genetic analysis of <it>Phaseolus vulgaris</it>. These markers showed satisfactory rates of transferability, especially between species that have great economic and genomic values. Their diversity was comparable to genomic SSRs, and they were incorporated in the common bean reference genetic map, which constitutes an important contribution to and advance in <it>Phaseolus vulgaris </it>genomic research.</p
Inhibition of Nuclear Factor of Activated T-Cells (NFAT) Suppresses Accelerated Atherosclerosis in Diabetic Mice
OBJECTIVE OF THE STUDY: Diabetic patients have a much more widespread and aggressive form of atherosclerosis and therefore, higher risk for myocardial infarction, peripheral vascular disease and stroke, but the molecular mechanisms leading to accelerated damage are still unclear. Recently, we showed that hyperglycemia activates the transcription factor NFAT in the arterial wall, inducing the expression of the pro-atherosclerotic protein osteopontin. Here we investigate whether NFAT activation may be a link between diabetes and atherogenesis. METHODOLOGY AND PRINCIPAL FINDINGS: Streptozotocin (STZ)-induced diabetes in apolipoprotein E(-/-) mice resulted in 2.2 fold increased aortic atherosclerosis and enhanced pro-inflammatory burden, as evidenced by elevated blood monocytes, endothelial activation- and inflammatory markers in aorta, and pro-inflammatory cytokines in plasma. In vivo treatment with the NFAT blocker A-285222 for 4 weeks completely inhibited the diabetes-induced aggravation of atherosclerosis, having no effect in non-diabetic mice. STZ-treated mice exhibited hyperglycemia and higher plasma cholesterol and triglycerides, but these were unaffected by A-285222. NFAT-dependent transcriptional activity was examined in aorta, spleen, thymus, brain, heart, liver and kidney, but only augmented in the aorta of diabetic mice. A-285222 completely blocked this diabetes-driven NFAT activation, but had no impact on the other organs or on splenocyte proliferation or cytokine secretion, ruling out systemic immunosuppression as the mechanism behind reduced atherosclerosis. Instead, NFAT inhibition effectively reduced IL-6, osteopontin, monocyte chemotactic protein 1, intercellular adhesion molecule 1, CD68 and tissue factor expression in the arterial wall and lowered plasma IL-6 in diabetic mice. CONCLUSIONS: Targeting NFAT signaling may be a novel and attractive approach for the treatment of diabetic macrovascular complications
Fully-Unintegrated Parton Distribution and Fragmentation Functions at Perturbative k_T
We define and study the properties of generalized beam functions (BFs) and
fragmenting jet functions (FJFs), which are fully-unintegrated parton
distribution functions (PDFs) and fragmentation functions (FFs) for
perturbative k_T. We calculate at one loop the coefficients for matching them
onto standard PDFs and FFs, correcting previous results for the BFs in the
literature. Technical subtleties when measuring transverse momentum in
dimensional regularization are clarified, and this enables us to renormalize in
momentum space. Generalized BFs describe the distribution in the full
four-momentum k_mu of a colliding parton taken out of an initial-state hadron,
and therefore characterize the collinear initial-state radiation. We illustrate
their importance through a factorization theorem for pp -> l^+ l^- + 0 jets,
where the transverse momentum of the lepton pair is measured. Generalized FJFs
are relevant for the analysis of semi-inclusive processes where the full
momentum of a hadron, fragmenting from a jet with constrained invariant mass,
is measured. Their significance is shown for the example of e^+ e^- -> dijet+h,
where the perpendicular momentum of the fragmenting hadron with respect to the
thrust axis is measured.Comment: Journal versio
Pharmacy practice research priorities during the COVID-19 pandemic: Recommendations of a panel of experts convened by FIP Pharmacy Practice Research Special Interest Group
Across the globe, pharmacists on the frontline continue to fight COVID-19 and its continuously evolving physical, mental, and economic consequences armed by their knowledge, professionalism, and dedication. Their need for credible scientific evidence to inform their practice has never been more urgent. Despite the exponentially increasing number of publications since the start of the pandemic, questions remain unanswered, and more are created, than have been resolved by the increasing number of publications.
A panel of leading journal editors was convened by the International Pharmaceutical Federation (FIP) Pharmacy Practice Research Special Interest Group to discuss the current status of COVID-19 related research, provide their recommendations, and identify focal points for pharmacy practice, social pharmacy, and education research moving forward.
Key priorities identified spanned a wide range of topics, reflecting the need for good quality research to inform practice and education. The panel insisted that a foundation in theory and use of rigorous methods should continue forming the basis of inquiry and its resultant papers, regardless of topic area. From assessing the clinical and cost effectiveness of COVID-19 therapies and vaccines to assessing different models of pharmaceutical services and education delivery, these priorities will ensure that our practice is informed by the best quality scientific evidence at this very challenging time
Quantum interference and Klein tunneling in graphene heterojunctions
The observation of quantum conductance oscillations in mesoscopic systems has
traditionally required the confinement of the carriers to a phase space of
reduced dimensionality. While electron optics such as lensing and focusing have
been demonstrated experimentally, building a collimated electron interferometer
in two unconfined dimensions has remained a challenge due to the difficulty of
creating electrostatic barriers that are sharp on the order of the electron
wavelength. Here, we report the observation of conductance oscillations in
extremely narrow graphene heterostructures where a resonant cavity is formed
between two electrostatically created bipolar junctions. Analysis of the
oscillations confirms that p-n junctions have a collimating effect on
ballistically transmitted carriers. The phase shift observed in the conductance
fringes at low magnetic fields is a signature of the perfect transmission of
carriers normally incident on the junctions and thus constitutes a direct
experimental observation of ``Klein Tunneling.''Comment: 13 pages and 6 figures including supplementary information. The paper
has been modified in light of new theoretical results available at
arXiv:0808.048
High-performance reconstruction of microscopic force fields from Brownian trajectories
The accurate measurement of microscopic force fields is crucial in many branches of science
and technology, from biophotonics and mechanobiology to microscopy and optomechanics.
These forces are often probed by analysing their influence on the motion of Brownian particles. Here we introduce a powerful algorithm for microscopic force reconstruction via
maximum-likelihood-estimator analysis (FORMA) to retrieve the force field acting on a
Brownian particle from the analysis of its displacements. FORMA estimates accurately the
conservative and non-conservative components of the force field with important advantages
over established techniques, being parameter-free, requiring ten-fold less data and executing
orders-of-magnitude faster. We demonstrate FORMA performance using optical tweezers,
showing how, outperforming other available techniques, it can identify and characterise
stable and unstable equilibrium points in generic force fields. Thanks to its high performance,
FORMA can accelerate the development of microscopic and nanoscopic force transducers for
physics, biology and engineering
Helical Chirality: a Link between Local Interactions and Global Topology in DNA
DNA supercoiling plays a major role in many cellular functions. The global DNA conformation is however intimately linked to local DNA-DNA interactions influencing both the physical properties and the biological functions of the supercoiled molecule. Juxtaposition of DNA double helices in ubiquitous crossover arrangements participates in multiple functions such as recombination, gene regulation and DNA packaging. However, little is currently known about how the structure and stability of direct DNA-DNA interactions influence the topological state of DNA. Here, a crystallographic analysis shows that due to the intrinsic helical chirality of DNA, crossovers of opposite handedness exhibit markedly different geometries. While right-handed crossovers are self-fitted by sequence-specific groove-backbone interaction and bridging Mg2+ sites, left-handed crossovers are juxtaposed by groove-groove interaction. Our previous calculations have shown that the different geometries result in differential stabilisation in solution, in the presence of divalent cations. The present study reveals that the various topological states of the cell are associated with different inter-segmental interactions. While the unstable left-handed crossovers are exclusively formed in negatively supercoiled DNA, stable right-handed crossovers constitute the local signature of an unusual topological state in the cell, such as the positively supercoiled or relaxed DNA. These findings not only provide a simple mechanism for locally sensing the DNA topology but also lead to the prediction that, due to their different tertiary intra-molecular interactions, supercoiled molecules of opposite signs must display markedly different physical properties. Sticky inter-segmental interactions in positively supercoiled or relaxed DNA are expected to greatly slow down the slithering dynamics of DNA. We therefore suggest that the intrinsic helical chirality of DNA may have oriented the early evolutionary choices for DNA topology
A Formalism for the Systematic Treatment of Rapidity Logarithms in Quantum Field Theory
Many observables in QCD rely upon the resummation of perturbation theory to
retain predictive power. Resummation follows after one factorizes the cross
section into the rele- vant modes. The class of observables which are sensitive
to soft recoil effects are particularly challenging to factorize and resum
since they involve rapidity logarithms. In this paper we will present a
formalism which allows one to factorize and resum the perturbative series for
such observables in a systematic fashion through the notion of a "rapidity
renormalization group". That is, a Collin-Soper like equation is realized as a
renormalization group equation, but has a more universal applicability to
observables beyond the traditional transverse momentum dependent parton
distribution functions (TMDPDFs) and the Sudakov form factor. This formalism
has the feature that it allows one to track the (non-standard) scheme
dependence which is inherent in any scenario where one performs a resummation
of rapidity divergences. We present a pedagogical introduction to the formalism
by applying it to the well-known massive Sudakov form factor. The formalism is
then used to study observables of current interest. A factorization theorem for
the transverse momentum distribution of Higgs production is presented along
with the result for the resummed cross section at NLL. Our formalism allows one
to define gauge invariant TMDPDFs which are independent of both the hard
scattering amplitude and the soft function, i.e. they are uni- versal. We
present details of the factorization and resummation of the jet broadening
cross section including a renormalization in pT space. We furthermore show how
to regulate and renormalize exclusive processes which are plagued by endpoint
singularities in such a way as to allow for a consistent resummation.Comment: Typos in Appendix C corrected, as well as a typo in eq. 5.6
Betti numbers for numerical semigroup rings
We survey results related to the magnitude of the Betti numbers of numerical
semigroup rings and of their tangent cones.Comment: 22 pages; v2: updated references. To appear in Multigraded Algebra
and Applications (V. Ene, E. Miller Eds.
Impact of Space Weather on Climate and Habitability of Terrestrial Type Exoplanets
The current progress in the detection of terrestrial type exoplanets has
opened a new avenue in the characterization of exoplanetary atmospheres and in
the search for biosignatures of life with the upcoming ground-based and space
missions. To specify the conditions favorable for the origin, development and
sustainment of life as we know it in other worlds, we need to understand the
nature of astrospheric, atmospheric and surface environments of exoplanets in
habitable zones around G-K-M dwarfs including our young Sun. Global environment
is formed by propagated disturbances from the planet-hosting stars in the form
of stellar flares, coronal mass ejections, energetic particles, and winds
collectively known as astrospheric space weather. Its characterization will
help in understanding how an exoplanetary ecosystem interacts with its host
star, as well as in the specification of the physical, chemical and biochemical
conditions that can create favorable and/or detrimental conditions for
planetary climate and habitability along with evolution of planetary internal
dynamics over geological timescales. A key linkage of (astro) physical,
chemical, and geological processes can only be understood in the framework of
interdisciplinary studies with the incorporation of progress in heliophysics,
astrophysics, planetary and Earth sciences. The assessment of the impacts of
host stars on the climate and habitability of terrestrial (exo)planets will
significantly expand the current definition of the habitable zone to the
biogenic zone and provide new observational strategies for searching for
signatures of life. The major goal of this paper is to describe and discuss the
current status and recent progress in this interdisciplinary field and to
provide a new roadmap for the future development of the emerging field of
exoplanetary science and astrobiology.Comment: 206 pages, 24 figures, 1 table; Review paper. International Journal
of Astrobiology (2019
- …