130 research outputs found

    Relationship between pp65 antigenemia levels and real-time quantitative DNA PCR for Human Cytomegalovirus (HCMV) management in immunocompromised patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantitative real-time PCR assays, which are more rapid and practical than pp65 antigenemia determination, are progressively becoming the preferred method for monitoring Human Cytomegalovirus (HCMV) reactivation. However, the relationship between HCMV DNA and antigenemia levels is still under investigation. The aim of this study was to analyse the relationship between HCMV DNA and pp65 antigenemia levels in order to identify clinically useful threshold values for the management of patients.</p> <p>Methods</p> <p>475 consecutive samples from 156 immunosuppressed patients were tested for HCMV by pp65 antigenemia and Real-time PCR assay.</p> <p>Results </p> <p>136 out of 475 consecutive samples derived from 48 patients showed evidence of HCMV infection. HCMV DNA was detected in 106 samples, pp65 antigen in 3, and both markers in 27. pp65 antigen detection was associated with higher HCMV DNA levels. The cut-off HCMV DNA level that best predicted pp65 antigenemia in this series of samples was 11,500 copies/ml, but different threshold levels could be observed for specific groups of patients. HCMV disease was observed in 5 out of 48 patients with active HCMV infection. The presence of clinical symptoms was associated with positive pp65 and with higher antigenemia levels. Higher HCMV DNA load at the onset of viral replication was correlated to the development of clinical symptoms.</p> <p>Conclusion</p> <p>Both pp65 antigenemia and HCMV DNA load can be useful for the prospective monitoring of immunocompromised subjects. Specific cut-off levels capable of triggering preemptive antiviral treatment should be determined in accordance to the type of test used and the characteristics of patients and prospectively validated.</p

    Development of a real-time quantitative PCR assay for detection of a stable genomic region of BK virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>BK virus infections can have clinically significant consequences in immunocompromised individuals. Detection and monitoring of active BK virus infections in certain situations is recommended and therefore PCR assays for detection of BK virus have been developed. The performance of current BK PCR detection assays is limited by the existence of viral polymorphisms, unknown at the time of assay development, resulting in inconsistent detection of BK virus. The objective of this study was to identify a stable region of the BK viral genome for detection by PCR that would be minimally affected by polymorphisms as more sequence data for BK virus becomes available.</p> <p>Results</p> <p>Employing a combination of techniques, including amino acid and DNA sequence alignment and interspecies analysis, a conserved, stable PCR target region of the BK viral genomic region was identified within the VP2 gene. A real-time quantitative PCR assay was then developed that is specific for BK virus, has an analytical sensitivity of 15 copies/reaction (450 copies/ml) and is highly reproducible (CV ≤ 5.0%).</p> <p>Conclusion</p> <p>Identifying stable PCR target regions when limited DNA sequence data is available may be possible by combining multiple analysis techniques to elucidate potential functional constraints on genomic regions. Applying this approach to the development of a real-time quantitative PCR assay for BK virus resulted in an accurate method with potential clinical applications and advantages over existing BK assays.</p

    Development and evaluation of a real-time one step Reverse-Transcriptase PCR for quantitation of Chandipura Virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chandipura virus (CHPV), a member of family <it>Rhabdoviridae </it>was attributed to an explosive outbreak of acute encephalitis in children in Andhra Pradesh, India in 2003 and a small outbreak among tribal children from Gujarat, Western India in 2004. The case-fatality rate ranged from 55–75%. Considering the rapid progression of the disease and high mortality, a highly sensitive method for quantifying CHPV RNA by real-time one step reverse transcriptase PCR (real-time one step RT-PCR) using TaqMan technology was developed for rapid diagnosis.</p> <p>Methods</p> <p>Primers and probe for P gene were designed and used to standardize real-time one step RT-PCR assay for CHPV RNA quantitation. Standard RNA was prepared by PCR amplification, TA cloning and run off transcription. The optimized real-time one step RT-PCR assay was compared with the diagnostic nested RT-PCR and different virus isolation systems [<it>in vivo </it>(mice) <it>in ovo </it>(eggs), <it>in vitro </it>(Vero E6, PS, RD and Sand fly cell line)] for the detection of CHPV. Sensitivity and specificity of real-time one step RT-PCR assay was evaluated with diagnostic nested RT-PCR, which is considered as a gold standard.</p> <p>Results</p> <p>Real-time one step RT-PCR was optimized using <it>in vitro </it>transcribed (IVT) RNA. Standard curve showed linear relationship for wide range of 10<sup>2</sup>-10<sup>10 </sup>(r<sup>2 </sup>= 0.99) with maximum Coefficient of variation (CV = 5.91%) for IVT RNA. The newly developed real-time RT-PCR was at par with nested RT-PCR in sensitivity and superior to cell lines and other living systems (embryonated eggs and infant mice) used for the isolation of the virus. Detection limit of real-time one step RT-PCR and nested RT-PCR was found to be 1.2 × 10<sup>0 </sup>PFU/ml. RD cells, sand fly cells, infant mice, and embryonated eggs showed almost equal sensitivity (1.2 × 10<sup>2 </sup>PFU/ml). Vero and PS cell-lines (1.2 × 10<sup>3 </sup>PFU/ml) were least sensitive to CHPV infection. Specificity of the assay was found to be 100% when RNA from other viruses or healthy individual was used.</p> <p>Conclusion</p> <p>On account of the high sensitivity, reproducibility and specificity, the assay can be used for the rapid detection and quantitation of CHPV RNA from clinical samples during epidemics and from endemic areas. The assay may also find application in screening of antiviral compounds, understanding of pathogenesis as well as evaluation of vaccine.</p

    The Potential Influence of Common Viral Infections Diagnosed during Hospitalization among Critically Ill Patients in the United States

    Get PDF
    Viruses are the most common source of infection among immunocompetent individuals, yet they are not considered a clinically meaningful risk factor among the critically ill. This work examines the association of viral infections diagnosed during the hospital stay or not documented as present on admission to the outcomes of ICU patients with no evidence of immunosuppression on admission. This is a population-based retrospective cohort study of University HealthSystem Consortium (UHC) academic centers in the U.S. from the years 2006 to 2009. The UHC is an alliance of over 90% of the non-profit academic medical centers in the U.S. A total of 209,695 critically ill patients were used in this analysis. Eight hospital complications were examined. Patients were grouped into four cohorts: absence of infection, bacterial infection only, viral infection only, and bacterial and viral infection during same hospital admission. Viral infections diagnosed during hospitalization significantly increased the risk of all complications. There was also a seasonal pattern for viral infections. Specific viruses associated with poor outcomes included influenza, RSV, CMV, and HSV. Patients who had both viral and bacterial infections during the same hospitalization had the greatest risk of mortality RR 6.58, 95% CI (5.47, 7.91); multi-organ failure RR 8.25, 95% CI (7.50, 9.07); and septic shock RR 271.2, 95% CI (188.0, 391.3). Viral infections may play a significant yet unrecognized role in the outcomes of ICU patients. They may serve as biological markers or play an active role in the development of certain adverse complications by interacting with coincident bacterial infection

    An Artemisinin-Derived Dimer Has Highly Potent Anti-Cytomegalovirus (CMV) and Anti-Cancer Activities

    Get PDF
    We recently reported that two artemisinin-derived dimers (dimer primary alcohol 606 and dimer sulfone 4-carbamate 832-4) are significantly more potent in inhibiting human cytomegalovirus (CMV) replication than artemisinin-derived monomers. In our continued evaluation of the activities of artemisinins in CMV inhibition, twelve artemisinin-derived dimers and five artemisinin-derived monomers were used. Dimers as a group were found to be potent inhibitors of CMV replication. Comparison of CMV inhibition and the slope parameter of dimers and monomers suggest that dimers are distinct in their anti-CMV activities. A deoxy dimer (574), lacking the endoperoxide bridge, did not have any effect on CMV replication, suggesting a role for the endoperoxide bridge in CMV inhibition. Differences in anti-CMV activity were observed among three structural analogs of dimer sulfone 4-carbamate 832-4 indicating that the exact placement and oxidation state of the sulfur atom may contribute to its anti-CMV activity. Of all tested dimers, artemisinin-derived diphenyl phosphate dimer 838 proved to be the most potent inhibitor of CMV replication, with a selectivity index of approximately 1500, compared to our previously reported dimer sulfone 4-carbamate 832-4 with a selectivity index of about 900. Diphenyl phosphate dimer 838 was highly active against a Ganciclovir-resistant CMV strain and was also the most active dimer in inhibition of cancer cell growth. Thus, diphenyl phosphate dimer 838 may represent a lead for development of a highly potent and safe anti-CMV compound

    Development and optimization of quantitative PCR for the diagnosis of invasive aspergillosis with bronchoalveolar lavage fluid

    Get PDF
    Background: The diagnosis of invasive pulmonary aspergillosis (IPA) remains challenging. Culture and histopathological examination of bronchoalveolar lavage (BAL) fluid are useful but have suboptimal sensitivity and in the case of culture may require several days for fungal growth to be evident. Detection of Aspergillus DNA in BAL fluid by quantitative PCR (qPCR) offers the potential for earlier diagnosis and higher sensitivity. It is important to adopt quality control measures in PCR assays to address false positives and negatives which can hinder accurate evaluation of diagnostic performance. Methods: BAL fluid from 94 episodes of pneumonia in 81 patients was analyzed. Thirteen episodes were categorized as proven or probable IPA using Mycoses Study Group criteria. The pellet and the supernatant fractions of the BAL were separately assayed. A successful extraction was confirmed with a human 18S rRNA gene qPCR. Inhibition in each qPCR was measured using an exogenous DNA based internal amplification control (IAC). The presence of DNA from pathogens in the Aspergillus genus was detected using qPCR targeting fungal 18S rRNA gene. Results: Human 18S rRNA gene qPCR confirmed successful DNA extraction of all samples. IAC detected some degree of initial inhibition in 11 samples. When culture was used to diagnose IPA, the sensitivity and specificity were 84.5% and 100% respectively. Receiver-operating characteristic analysis of qPCR showed that a cutoff of 13 fg of Aspergillus genomic DNA generated a sensitivity, specificity, positive and negative predictive value of 77%, 88%, 50%, 96% respectively. BAL pellet and supernatant analyzed together resulted in sensitivity and specificity similar to BAL pellet alone. Some patients did not meet standard criteria for IPA, but had consistently high levels of Aspergillus DNA in BAL fluid by qPCR. Conclusion: The Aspergillus qPCR assay detected Aspergillus DNA in 76.9% of subjects with proven or probable IPA when the concentrated BAL fluid pellet fraction was used for diagnosis. There was no benefit from analyzing the BAL supernatant fraction. Use of both extraction and amplification controls provided optimal quality control for interpreting qPCR results and therefore may increase our understanding of the true potential of qPCR for the diagnosis of IPA.Supported by NIH grant R01 AI054703 from the National Institute of Allergy and Infectious Diseases

    Autophagy and ATP-induced anti-apoptosis in antigen presenting cells (APC) follows the cytokine storm in patients after major trauma

    Get PDF
    Severe trauma and the systemic inflammatory response syndrome (SIRS) occur as a result of a cytokine storm which is in part due to ATP released from damaged tissue. This pathology also leads to increased numbers of immature antigen presenting cells (APC) sharing properties of dendritic cells (DC) or macrophages (MΦ). The occurrence of immature APC appears to coincide with the reactivation of herpes virus infections such as Epstein Barr virus (EBV). The aim of this study was the comparative analysis of the ultrastructural and functional characteristics of such immature APC. In addition, we investigated EBV infection/ reactivation and whether immature APC might be targets for natural killers (NK). Significant macroautophagy, mitochondrial degradation and multivesicular body formation together with the identification of herpes virus particles were morphological findings associated with immature APC. Exogenous stressors such as ATP further increased morphological signs of autophagy, including LC3 expression. Functional tests using fluorescent bacteria proved impaired phagolysosome fusion. However, immature APC were susceptible to NK-92-mediated cytolysis. We found evidence for EBV latency state II infection by detecting EBV-specific LMP1 and EBNA2 in immature APC and in whole blood of these patients. In summary, trauma-induced cytokine storms may induce maturation arrest of APC, promote ATP-induced autophagy, support EBV persistence and impair the degradation of phagocytozed bacteria through inefficient phagolysosome fusion. The susceptibility to NK-mediated cytolysis supports the hypothesis that NK function is likely to contribute to immune reconstitution after major trauma by regulating immature APC, and ATP-induced autophagy and survival
    corecore