24 research outputs found

    The GSMaP Precipitation Retrieval Algorithm for Microwave Sounders-Part I: Over-Ocean Algorithm

    Get PDF
    Abstract-We develop an over-ocean rainfall retrieval algorithm for the Advanced Microwave Sounding Unit (AMSU) based on the Global Satellite Mapping of Precipitation (GSMaP) microwave radiometer algorithm. This algorithm combines an emissionbased estimate from brightness temperature (Tb) at 23 GHz and a scattering-based estimate from Tb at 89 GHz, depending on a scattering index (SI) computed from Tb at both 89 and 150 GHz. Precipitation inhomogeneities are also taken into account. The GSMaP-retrieved rainfall from the AMSU (GSMaP_AMSU) is compared with the National Oceanic and Atmospheric Administration (NOAA) standard algorithm (NOAA_AMSU)-retrieved data using Tropical Rainfall Measuring Mission (TRMM) data as a reference. Rain rates retrieved by GSMaP_AMSU have better agreement with TRMM estimates over midlatitudes during winter. Better estimates over multitudes over winter are given by the use of Tb at 23 GHz in the GSMaP_AMSU algorithm. It was also shown that GSMaP_AMSU has higher rain detection than NOAA_AMSU. Index Terms-Microwave radiometer (MWR), microwave sounder, precipitation, rain-rate retrieval

    Improvement of TMI Rain Retrievals in Mountainous Areas

    Get PDF
    Heavy rainfall associated with shallow orographic rainfall systems has been underestimated by passive microwave radiometer algorithms owing to weak ice scattering signatures. The authors improve the performance of estimates made using a passive microwave radiometer algorithm, the Global Satellite Mapping of Precipitation (GSMaP) algorithm, from data obtained by the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) for orographic heavy rainfall. An orographic/nonorographic rainfall classification scheme is developed on the basis of orographically forced upward vertical motion and the convergence of surface moisture flux estimated from ancillary data. Lookup tables derived from orographic precipitation profiles are used to estimate rainfall for an orographic rainfall pixel, whereas those derived from original precipitation profiles are used to estimate rainfall for a nonorographic rainfall pixel. Rainfall estimates made using the revised GSMaP algorithm are in better agreement with estimates from data obtained by the radar on the TRMM satellite and by gauge-calibrated ground radars than are estimates made using the original GSMaP algorithm

    Mesoscale Hybrid Data Assimilation System based on JMA Nonhydrostatic Model

    Get PDF
    This paper discusses the benefits of using a hybrid ensemble Kalman filter and four-dimensional variational (4D-Var) data assimilation (DA) system rather than a 4D-Var system employing the National Meteorological Center (NMC, now known as NCEP) method (4D-Var-Bnmc) to predict severe weather events. An adjointbased 4D-Var system was employed with a background error covariance matrix B constructed from theNMC method and perturbations in a local ensemble transform Kalman filter system. The DA systems are based on the Japan Meteorological Agency’s nonhydrostatic model. To reduce the sampling noise, three types of implementation (the spatial localization, spectral localization, and neighboring ensemble approaches) were tested. The assimilation of a pseudosingle observation of sea level pressure located at a tropical cyclone (TC) center yielded analysis increments physically consistent with what is expected of a mature TC in the hybrid systems at the beginning of the assimilation window, whereas analogous experiments performed using the 4D-Var-Bnmc system did not. At the end, the structures of the 4D-Var-based increments became similar to one another, while the analysis increment by the 4D-Var-Bnmc system was broad in the horizontal direction. Realistic DA experiments showed that all of the hybrid systems provided initial conditions that yielded more accurate TC track and intensity forecasts than those achievable by the 4D-Var-Bnmc system. The hybrid systems also yielded some statistically significant improvements in forecasting local heavy rainfall events in terms of fraction skill scores when a 160 km 3 160 km window size was used. The overall skills of the hybrid systems were relatively independent of the choice of implementation
    corecore