25 research outputs found

    Computation and representation in decision making and emotion

    Get PDF
    This thesis deals with three components of an organism’s interactions with its environment: learning, decision making, and emotions. In a series of 5 studies, I detail relationships between these processes, and investigate the representation and computations whereby they are achieved. In the first experiment I show how subjective wellbeing is influenced by one’s own rewards and expectations, but also those of other people. Furthermore, I find that parameter estimates of empathy predict decision-making in a distinct test of economic generosity. In my second study, I ask how stressful experiences modulate subsequent learning, detailing a specific impairment in action-learning under stress which also manifests itself in altered pupillary responses. In the third, I use a hierarchical model of learning to show that subjective uncertainty in aversive contexts predicts several dimensions of acute stress responses. Furthermore, I find that individuals who show greater uncertainty-tuning in their stress responses are better at predicting the presence of threat. In the final pair of studies I ask how decision variables for value-based choice are represented in the brain. I describe the combination of quality and quantity into value estimates in humans, revealing a central role for the Anterior Cingulate Cortex in value integration using functional magnetic resonance imaging. I next characterize the neural code for value in non-human primate frontal cortex, using single-neuron data from collaborators. These two studies provide convergent evidence that the value code may be more diverse and non-linear than previously reported, potentially conferring the ability to incorporate uncertainty signals directly in the activity of value coding neurons

    Response repetition biases in human perceptual decisions are explained by activity decay in competitive attractor models

    Get PDF
    Animals and humans have a tendency to repeat recent choices, a phenomenon known as choice hysteresis. The mechanism for this choice bias remains unclear. Using an established, biophysically informed model of a competitive attractor network for decision making, we found that decaying tail activity from the previous trial caused choice hysteresis, especially during difficult trials, and accurately predicted human perceptual choices. In the model, choice variability could be directionally altered through amplification or dampening of post-trial activity decay through simulated depolarizing or hyperpolarizing network stimulation. An analogous intervention using transcranial direct current stimulation (tDCS) over left dorsolateral prefrontal cortex (dlPFC) yielded a close match between model predictions and experimental results: net soma depolarizing currents increased choice hysteresis, while hyperpolarizing currents suppressed it. Residual activity in competitive attractor networks within dlPFC may thus give rise to biases in perceptual choices, which can be directionally controlled through non-invasive brain stimulation

    Movement-related beta oscillations show high intra-individual reliability

    Get PDF
    Oscillatory activity in the beta frequency range (15-30Hz) recorded from human sensorimotor cortex is of increasing interest as a putative biomarker of motor system function and dysfunction. Despite its increasing use in basic and clinical research, surprisingly little is known about the test-retest reliability of spectral power and peak frequency measures of beta oscillatory signals from sensorimotor cortex. Establishing that these beta measures are stable over time in healthy populations is a necessary precursor to their use in the clinic. Here, we used scalp electroencephalography (EEG) to evaluate intra-individual reliability of beta-band oscillations over six sessions, focusing on changes in beta activity during movement (Movement-Related Beta Desynchronization, MRBD) and after movement termination (Post-Movement Beta Rebound, PMBR). Subjects performed visually-cued unimanual wrist flexion and extension. We assessed Intraclass Correlation Coefficients (ICC) and between-session correlations for spectral power and peak frequency measures of movement-related and resting beta activity. Movement-related and resting beta power from both sensorimotor cortices was highly reliable across sessions. Resting beta power yielded highest reliability (average ICC=0.903), followed by MRBD (average ICC=0.886) and PMBR (average ICC=0.663). Notably, peak frequency measures yielded lower ICC values compared to the assessment of spectral power, particularly for movement-related beta activity (ICC=0.386-0.402). Our data highlight that power measures of movement-related beta oscillations are highly reliable, while corresponding peak frequency measures show greater intra-individual variability across sessions. Importantly, our finding that beta power estimates show high intra-individual reliability over time serves to validate the notion that these measures reflect meaningful individual differences that can be utilised in basic research and clinical studies

    Acute stress selectively impairs learning to act

    Get PDF
    Stress interferes with instrumental learning. However, choice is also influenced by non-instrumental factors, most strikingly by biases arising from Pavlovian associations that facilitate action in pursuit of rewards and inaction in the face of punishment. Whether stress impacts on instrumental learning via these Pavlovian associations is unknown. Here, in a task where valence (reward or punishment) and action (go or no-go) were orthogonalised, we asked whether the impact of stress on learning was action or valence specific. We exposed 60 human participants either to stress (socially-evaluated cold pressor test) or a control condition (room temperature water). We contrasted two hypotheses: that stress would lead to a non-selective increase in the expression of Pavlovian biases; or that stress, as an aversive state, might specifically impact action production due to the Pavlovian linkage between inaction and aversive states. We found support for the second of these hypotheses. Stress specifically impaired learning to produce an action, irrespective of the valence of the outcome, an effect consistent with a Pavlovian linkage between punishment and inaction. This deficit in action-learning was also reflected in pupillary responses; stressed individuals showed attenuated pupillary responses to action, hinting at a noradrenergic contribution to impaired action-learning under stress

    Computing value from quality and quantity in human decision making

    Get PDF
    How organisms learn the value of single stimuli through experience is well described. In many decisions, however, value estimates are computed 'on the fly', by combining multiple stimulus attributes. The neural basis of this computation is poorly understood. Here we explore a common scenario in which decision-makers must combine information about quality and quantity to determine the best option. Using fMRI, we examined the neural representation of quality, quantity, and their integration into an integrated subjective value signal in humans of both genders. We found that activity within Inferior Frontal Gyrus (IFG) correlated with offer quality, whilst activity in the Intra Parietal Sulcus (IPS) specifically correlated with offer quantity. Several brain regions, including the Anterior Cingulate Cortex (ACC), were sensitive to an interaction of quality and quantity. However, the ACC was uniquely activated by quality, quantity, and their interaction, suggesting this region provides a substrate for flexible computation of value from both quality and quantity. Furthermore, ACC signals across subjects correlated with the strength of quality and quantity signals in IFG and IPS respectively. ACC tracking of subjective value also correlated with choice predictability. Finally, activity in the ACC was elevated for choice trials, suggesting that ACC provides a nexus for the computation of subjective value in multi-attribute decision making.SIGNIFICANCE STATEMENTWould you prefer 3 apples or 2 oranges? Many choices we make each day require us to weigh up the quality and quantity of different outcomes. Using fMRI, we show that option quality is selectively represented in the Inferior Frontal Gyrus (IFG), whilst option quantity correlates with areas of the Intra Parietal Sulcus (IPS) which have previously been associated with numerical processing. We show that information about the two is integrated into a value signal in the Anterior Cingulate Cortex (ACC), and the fidelity of this integration predicts choice predictability. Our results demonstrate how on-the-fly value estimates are computed from multiple attributes in human value-based decision making

    Pharmacological Fingerprints of Contextual Uncertainty

    Get PDF
    Successful interaction with the environment requires flexible updating of our beliefs about the world. By estimating the likelihood of future events, it is possible to prepare appropriate actions in advance and execute fast, accurate motor responses. According to theoretical proposals, agents track the variability arising from changing environments by computing various forms of uncertainty. Several neuromodulators have been linked to uncertainty signalling, but comprehensive empirical characterisation of their relative contributions to perceptual belief updating, and to the selection of motor responses, is lacking. Here we assess the roles of noradrenaline, acetylcholine, and dopamine within a single, unified computational framework of uncertainty. Using pharmacological interventions in a sample of 128 healthy human volunteers and a hierarchical Bayesian learning model, we characterise the influences of noradrenergic, cholinergic, and dopaminergic receptor antagonism on individual computations of uncertainty during a probabilistic serial reaction time task. We propose that noradrenaline influences learning of uncertain events arising from unexpected changes in the environment. In contrast, acetylcholine balances attribution of uncertainty to chance fluctuations within an environmental context, defined by a stable set of probabilistic associations, or to gross environmental violations following a contextual switch. Dopamine supports the use of uncertainty representations to engender fast, adaptive responses. \ua9 2016 Marshall et al

    Adults with autism overestimate the volatility of the sensory environment.

    Get PDF
    Insistence on sameness and intolerance of change are among the diagnostic criteria for autism spectrum disorder (ASD), but little research has addressed how people with ASD represent and respond to environmental change. Here, behavioral and pupillometric measurements indicated that adults with ASD are less surprised than neurotypical adults when their expectations are violated, and decreased surprise is predictive of greater symptom severity. A hierarchical Bayesian model of learning suggested that in ASD, a tendency to overlearn about volatility in the face of environmental change drives a corresponding reduction in learning about probabilistically aberrant events, thus putatively rendering these events less surprising. Participant-specific modeled estimates of surprise about environmental conditions were linked to pupil size in the ASD group, thus suggesting heightened noradrenergic responsivity in line with compromised neural gain. This study offers insights into the behavioral, algorithmic and physiological mechanisms underlying responses to environmental volatility in ASD

    Restoring brain function after stroke - bridging the gap between animals and humans

    Get PDF
    Stroke is the leading cause of complex adult disability in the world. Recovery from stroke is often incomplete, which leaves many people dependent on others for their care. The improvement of long-term outcomes should, therefore, be a clinical and research priority. As a result of advances in our understanding of the biological mechanisms involved in recovery and repair after stroke, therapeutic opportunities to promote recovery through manipulation of poststroke plasticity have never been greater. This work has almost exclusively been carried out in preclinical animal models of stroke with little translation into human studies. The challenge ahead is to develop a mechanistic understanding of recovery from stroke in humans. Advances in neuroimaging techniques now enable us to reconcile behavioural accounts of recovery with molecular and cellular changes. Consequently, clinical trials can be designed in a stratified manner that takes into account when an intervention should be delivered and who is most likely to benefit. This approach is expected to lead to a substantial change in how restorative therapeutic strategies are delivered in patients after stroke
    corecore