6 research outputs found

    A 4D view on the evolution of metamorphic dehydration reactions

    Get PDF
    Metamorphic reactions influence the evolution of the Earth's crust in a range of tectonic settings. For example hydrous mineral dehydration in a subducting slab can produce fluid overpressures which may trigger seismicity. During reaction the mechanisms of chemical transport, including water expulsion, will dictate the rate of transformation and hence the evolution of physical properties such as fluid pressure. Despite the importance of such processes, direct observation of mineral changes due to chemical transport during metamorphism has been previously impossible both in nature and in experiment. Using time-resolved (4D) synchrotron X-ray microtomography we have imaged a complete metamorphic reaction and show how chemical transport evolves during reaction. We analyse the dehydration of gypsum to form bassanite and H2O which, like most dehydration reactions, produces a solid volume reduction leading to the formation of pore space. This porosity surrounds new bassanite grains producing fluid-filled moats, across which transport of dissolved ions to the growing grains occurs via diffusion. As moats grow in width, diffusion and hence reaction rate slow down. Our results demonstrate how, with new insights into the chemical transport mechanisms, we can move towards a more fundamental understanding of the hydraulic and chemical evolution of natural dehydrating systems

    Foot pain and functional limitation in healthy adults with hallux valgus: a cross-sectional study

    Get PDF
    Background Hallux valgus (HV) is a very common deformity of the first metatarsophalangeal joint that often requires surgical correction. However, the association between structural HV deformity and related foot pain and disability is unclear. Furthermore, no previous studies have investigated concerns about appearance and difficulty with footwear in a population with HV not seeking surgical correction. The aim of this cross-sectional study was to investigate foot pain, functional limitation, concern about appearance and difficulty with footwear in otherwise healthy adults with HV compared to controls. Methods Thirty volunteers with HV (radiographic HV angle >15 degrees) and 30 matched controls were recruited for this study (50 women, 10 men; mean age 44.4 years, range 20 to 76 years). Differences between groups were examined for self-reported foot pain and disability, satisfaction with appearance, footwear difficulty, and pressure-pain threshold at the first metatarsophalangeal joint. Functional measures included balance tests, walking performance, and hallux muscle strength (abduction and plantarflexion). Mean differences (MD) and 95% confidence intervals (CI) were calculated. Results All self-report measures showed that HV was associated with higher levels of foot pain and disability and significant concerns about appearance and footwear (p < 0.001). Lower pressure-pain threshold was measured at the medial first metatarsophalangeal joint in participants with HV (MD = -133.3 kPa, CI: -251.5 to -15.1). Participants with HV also showed reduced hallux plantarflexion strength (MD = -37.1 N, CI: -55.4 to -18.8) and abduction strength (MD = -9.8 N, CI: -15.6 to -4.0), and increased mediolateral sway when standing with both feet with eyes closed (MD = 0.34 cm, CI: 0.04 to 0.63). Conclusions These findings show that HV negatively impacts on self-reported foot pain and function, and concerns about foot appearance and footwear in otherwise healthy adults. There was also evidence of impaired hallux muscle strength and increased postural sway in HV subjects compared to controls, although general physical functioning and participation in physical activity were not adversely affected

    Effective photosensitized, electrosensitized, and mechanosensitized luminescence of lanthanide complexes

    No full text
    corecore