84 research outputs found

    Survivin a radiogenetic promoter for glioblastoma viral gene therapy independently from CArG motifs

    Get PDF
    BACKGROUND: Radiogenetic therapy is a novel approach in the treatment of cancer, which employs genetic modification to alter the sensitivity of tumor cells to the effect of applied radiation. AIM: To select a potent radiation inducible promoter in the context of brain tumors and to investigate if CArG radio responsive motifs or other elements in the promoter nucleotide sequences can correlate to its response to radiation. METHODS: To select initial candidates for promoter inducible elements, the levels of mRNA expression of six different promoters were assessed using Quantitative RTPCR in D54 MG cells before and after radiation exposure. Recombinant Ad/reporter genes driven by five different promoters; CMV, VEGF, FLT-1, DR5 and survivin were constructed. Glioma cell lines were infected with different multiplicity of infection of the (promoter) Ad or CMV Ad. Cells were then exposed to a range of radiation (0–12 Gy) at single fraction. Fluorescent microscopy, Luc assay and X-gal staining was used to detect the level of expression of related genes. Different glioma cell lines and normal astrocytes were infected with Ad survivin and exposed to radiation. The promoters were analyzed for presence of CArG radio-responsive motifs and CCAAT box consensus using NCBI blast bioinformatics software. RESULTS: Radiotherapy increases the expression of gene expression by 1.25–2.5 fold in different promoters other than survivin after 2 h of radiation. RNA analysis was done and has shown an increase in copy number of tenfold for survivin. Most importantly cells treated with RT and Ad Luc driven by survivin promoter showed a fivefold increase in expression after 2 Gy of radiation in comparison to non-irradiated cells. Presence or absence of CArG motifs did not correlate with promoter response to radiation. Survivin with the best response to radiation had the lowest number of CCAAT box. CONCLUSION: Survivin is a selective potent radiation inducible promoter for glioblastoma viral gene therapy and this response to radiation could be independent of CArG motifs

    Enhanced Transduction and Replication of RGD-Fiber Modified Adenovirus in Primary T Cells

    Get PDF
    Background: Adenoviruses are often used as vehicles to mediate gene delivery for therapeutic purposes, but their research scope in hematological cells remains limited due to a narrow choice of host cells that express the adenoviral receptor (CAR). T cells, which are attractive targets for gene therapy of numerous diseases, remain resistant to adenoviral infection because of the absence of CAR expression. Here, we demonstrate that this resistance can be overcome when murine or human T cells are transduced with an adenovirus incorporating the RGD-fiber modification (Ad-RGD). Methodology/Principal Finding: A luciferase-expressing replication-deficient Ad-RGD infected 3-fold higher number of activated primary T cells than an adenovirus lacking the RGD-fiber modification in vitro. Infection with replicationcompetent Ad-RGD virus also caused increased cell cycling, higher E1A copy number and enriched hexon antigen expression in both human and murine T cells. Transduction with oncolytic Ad-RGD also resulted in higher titers of progeny virus and enhanced the killing of T cells. In vivo, 35–45 % of splenic T cells were transduced by Ad-RGD. Conclusions: Collectively, our results prove that a fiber modified Ad-RGD successfully transduces and replicates in primary

    Combination of adenoviral virotherapy and temozolomide chemotherapy eradicates malignant glioma through autophagic and apoptotic cell death in vivo

    Get PDF
    Conditionally replicative adenoviruses (CRAds) represent a novel treatment strategy for malignant glioma. Recent studies suggest that the cytopathic effect elicited by these vectors is mediated through autophagy, a form of programmed cell death. Likewise, temozolomide (TMZ), a chemotherapeutic agent used for the treatment of malignant gliomas, also triggers autophagic cell death. In this study, we examined the potential to combine the two treatments in the setting of experimental glioma. In vitro, pretreatment with TMZ followed by CRAd-Surivin-pk7 enhanced cytotoxicity against a panel of glioma cell lines. Western blot analysis showed increased expression of BAX and p53, decreased expression of BCL2 and elevated level of APG5. Treatment with TMZ followed by CRAd-Survivin-pk7 (CRAd-S-pk7) led to a significant over-expression of autophagy markers, acidic vesicular organelles and light-chain 3 (LC3). These results were further evaluated in vivo, in which 90% of the mice with intracranial tumours were long-term survivors (>100 days) after treatment with TMZ and CRAd-S-pk7 (P<0.01). Analysis of tumours ex vivo showed expression of both LC3 and cleaved Caspase-3, proving that both autophagy and apoptosis are responsible for cell death in vivo. These results suggest that combination of chemovirotherapy offers a powerful tool against malignant glioma and should be further explored in the clinical setting

    Intracerebral Human Regulatory T Cells: Analysis of CD4+CD25+FOXP3+ T Cells in Brain Lesions and Cerebrospinal Fluid of Multiple Sclerosis Patients

    Get PDF
    Impaired suppressive capacity of CD4+CD25+FOXP3+ regulatory T cells (Treg) from peripheral blood of patients with multiple sclerosis (MS) has been reported by multiple laboratories. It is, however, currently unresolved whether Treg dysfunction in MS patients is limited to reduced control of peripheral T cell activation since most studies analyzed peripheral blood samples only. Here, we assessed early active MS lesions in brain biopsies obtained from 16 patients with MS by FOXP3 immunohistochemistry. In addition, we used six-color flow cytometry to determine numbers of Treg by analysis of FOXP3/CD127 expression in peripheral blood and cerebrospinal fluid (CSF) of 17 treatment-naïve MS patients as well as quantities of apoptosis sensitive CD45ROhiCD95hi cells in circulating and CSF Treg subsets. Absolute numbers of FOXP3+ and CD4+ cells were rather low in MS brain lesions and Treg were not detectable in 30% of MS biopsies despite the presence of CD4+ cell infiltrates. In contrast, Treg were detectable in all CSF samples and Treg with a CD45ROhiCD95hi phenotype previously shown to be highly apoptosis sensitive were found to be enriched in the CSF compared to peripheral blood of MS patients. We suggest a hypothetical model of intracerebral elimination of Treg by CD95L-mediated apoptosis within the MS lesion

    Mesenchymal Stem Cell Transition to Tumor-Associated Fibroblasts Contributes to Fibrovascular Network Expansion and Tumor Progression

    Get PDF
    Tumor associated fibroblasts (TAF), are essential for tumor progression providing both a functional and structural supportive environment. TAF, known as activated fibroblasts, have an established biological impact on tumorigenesis as matrix synthesizing or matrix degrading cells, contractile cells, and even blood vessel associated cells. The production of growth factors, cytokines, chemokines, matrix-degrading enzymes, and immunomodulatory mechanisms by these cells augment tumor progression by providing a suitable environment. There are several suggested origins of the TAF including tissue-resident, circulating, and epithelial-to-mesenchymal-transitioned cells.We provide evidence that TAF are derived from mesenchymal stem cells (MSC) that acquire a TAF phenotype following exposure to or systemic recruitment into adenocarcinoma xenograft models including breast, pancreatic, and ovarian. We define the MSC derived TAF in a xenograft ovarian carcinoma model by the immunohistochemical presence of 1) fibroblast specific protein and fibroblast activated protein; 2) markers phenotypically associated with aggressiveness, including tenascin-c, thrombospondin-1, and stromelysin-1; 3) production of pro-tumorigenic growth factors including hepatocyte growth factor, epidermal growth factor, and interleukin-6; and 4) factors indicative of vascularization, including alpha-smooth muscle actin, desmin, and vascular endothelial growth factor. We demonstrate that under long-term tumor conditioning in vitro, MSC express TAF-like proteins. Additionally, human MSC but not murine MSC stimulated tumor growth primarily through the paracrine production of secreted IL6.Our results suggest the dependence of in vitro Skov-3 tumor cell proliferation is due to the presence of tumor-stimulated MSC secreted IL6. The subsequent TAF phenotype arises from the MSC which ultimately promotes tumor growth through the contribution of microvascularization, stromal networks, and the production of tumor-stimulating paracrine factors

    Diffuse glioma growth: a guerilla war

    Get PDF
    In contrast to almost all other brain tumors, diffuse gliomas infiltrate extensively in the neuropil. This growth pattern is a major factor in therapeutic failure. Diffuse infiltrative glioma cells show some similarities with guerilla warriors. Histopathologically, the tumor cells tend to invade individually or in small groups in between the dense network of neuronal and glial cell processes. Meanwhile, in large areas of diffuse gliomas the tumor cells abuse pre-existent “supply lines” for oxygen and nutrients rather than constructing their own. Radiological visualization of the invasive front of diffuse gliomas is difficult. Although the knowledge about migration of (tumor)cells is rapidly increasing, the exact molecular mechanisms underlying infiltration of glioma cells in the neuropil have not yet been elucidated. As the efficacy of conventional methods to fight diffuse infiltrative glioma cells is limited, a more targeted (“search & destroy”) tactic may be needed for these tumors. Hopefully, the study of original human glioma tissue and of genotypically and phenotypically relevant glioma models will soon provide information about the Achilles heel of diffuse infiltrative glioma cells that can be used for more effective therapeutic strategies

    Glioma: experimental models and reality

    Get PDF
    corecore