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Survivin a radiogenetic promoter 
for glioblastoma viral gene therapy 
independently from CArG motifs
George E. Naoum1, Zeng B. Zhu2, Donald J. Buchsbaum3, David T. Curiel4 and Waleed O. Arafat1,3,5* 

Abstract 

Background: Radiogenetic therapy is a novel approach in the treatment of cancer, which employs genetic modifica-
tion to alter the sensitivity of tumor cells to the effect of applied radiation.

Aim: To select a potent radiation inducible promoter in the context of brain tumors and to investigate if CArG radio 
responsive motifs or other elements in the promoter nucleotide sequences can correlate to its response to radiation.

Methods: To select initial candidates for promoter inducible elements, the levels of mRNA expression of six differ-
ent promoters were assessed using Quantitative RTPCR in D54 MG cells before and after radiation exposure. Recom-
binant Ad/reporter genes driven by five different promoters; CMV, VEGF, FLT-1, DR5 and survivin were constructed. 
Glioma cell lines were infected with different multiplicity of infection of the (promoter) Ad or CMV Ad. Cells were then 
exposed to a range of radiation (0–12 Gy) at single fraction. Fluorescent microscopy, Luc assay and X-gal staining was 
used to detect the level of expression of related genes. Different glioma cell lines and normal astrocytes were infected 
with Ad survivin and exposed to radiation. The promoters were analyzed for presence of CArG radio-responsive motifs 
and CCAAT box consensus using NCBI blast bioinformatics software.

Results: Radiotherapy increases the expression of gene expression by 1.25–2.5 fold in different promoters other 
than survivin after 2 h of radiation. RNA analysis was done and has shown an increase in copy number of tenfold for 
survivin. Most importantly cells treated with RT and Ad Luc driven by survivin promoter showed a fivefold increase in 
expression after 2 Gy of radiation in comparison to non-irradiated cells. Presence or absence of CArG motifs did not 
correlate with promoter response to radiation. Survivin with the best response to radiation had the lowest number of 
CCAAT box.

Conclusion: Survivin is a selective potent radiation inducible promoter for glioblastoma viral gene therapy and this 
response to radiation could be independent of CArG motifs.
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Background
Brain tumor gliomas are among the most aggressive 
of human malignancies. Patients with histopathologic 
subtype, glioblastoma multiform (GBM) have the worst 
prognosis; despite aggressive surgery, radiation, and 
chemotherapy [1, 2]. Radiation remains an integral part 

of the conventional treatment of brain malignancies [3, 
4]. However, many gliomas are resistant to radiotherapy 
[5]. Additionally higher doses of radiotherapy are intoler-
able to normal brain tissue bringing with it complications 
that can lead to the deterioration of a patient’s general 
health. Therefore it is crucial to employ multidisciplinary 
approaches to overcome such obstacles and offer new 
solutions on a molecular level.

In this regard, the molecular and genetic basis underly-
ing pathogenesis and treatment resistance of these tumors 
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is under active investigation and is becoming better 
understood [6]. An important mediator of both tumori-
genesis and resistance to treatment involves inhibition of 
apoptosis [7]. Recently, survivin has been characterized as 
an important member of the inhibitor of apoptosis family, 
with a very complex biology that has not been fully under-
stood yet [8]. Survivin expression has been found to be 
undetectable in normal adult tissues [9]. However, it has 
been found to be abundantly expressed in a wide variety 
of human malignancies, including brain tumors [9].

Cancer radiogenetic therapy is a new approach that 
utilizes a multifunctional platform for tumor imaging, 
targeting, and gene delivery [10–13]. It employs using 
genetic modification to alter the sensitivity of malignant 
or normal tissue to the effect of radiation [14–17]. In this 
approach many vectors capable of delivering any pay-
load to the tumor cells are designed. Recently, after the 
success of oncolytic virus in clinical trials and the recent 
FDA approval for its use in the treatment of melanoma 
locally [18], it is concluded that viral vectors exhibit great 
advantages due to their natural capability of efficient cell 
attachment, entry and high level of transgene expression 
as part of the viral replication cycle [19–22]. Human Ad-
based vectors are now considered a major tool for gene 
therapy with more than 100 various adenoviral vectors 
developed for glioma targeting. Additionally, advances in 
viral based therapy have led to the use of condition repli-
cative adenovirus controlling the replication of the virus 
mainly through transcription regulation by using tumor 
specific radioinducible promoters [23, 24].

One of the radiation-inducible promoters described is 
the RecA promoter that was used to increase tumor necro-
sis factor-α (TNF-α) production in Clostridium sp. [25]. 
The Egr-1 promoter has also been used as a radioinducible 
promoter to deliver TNF-α to tumor cells [26–28]. Also, it 
was studied in the context of radioprotective effect of FLT-3 
in severe combined immunodeficient mice [27] for in vitro 
studies on gene activation [29] and for gene expression in 
the context of hypoxia inducible promoters [30]. One of the 
proposed mechanisms of the radiation mediated transcrip-
tion regulation is the presence of CArG box in the nucle-
otide sequence of different promoters regions including 
radiosensitive EGR-1 [31]. Unfortunately, these genes are 
neither up-regulated in gliomas nor specifically expressed 
in tumor cells. Nowadays, advances in bioinformatics pro-
vide a powerful tool for elucidating the functional features 
of genes or their promoters, and also prediction tools to 
identify specific elements within promoters sequence 
directly with no detectable sequence similarity [32].

To that end, In this study we tried a combined tech-
nique of radiation plus transcription regulation to prove 
the principle of regulating gene expression. The aim of 
this study is to investigate and select the best radiation 

inducible promoter in the context of viral brain tumors 
therapy. We also aim to investigate, using bioinformatics, 
if the presence of CArG radio responsive motifs or other 
elements in a promoter’s nucleotide sequences is related 
to our selection.

Methods
Cell culture
The human glioblastoma cell lines D54 MG, U251 MG 
and human astrocytes (from Dr. Yancey Gillespie, uni-
versity of Alabama at Birmingham, Birmingham, AL) 
were maintained in Dulbecco’s modified Eagle’s medium/
F12, supplemented with 10% fetal calf serum, l-glu-
tamine (200  μg/mL), 100  U/mL penicillin and 100  μg/
mL streptomycin, at 37 °C in a 100% humidified 5% CO2 
atmosphere.

Initial screening for mRNA copies in response to radiation
Six different human promoters (FLT-1, VEGF, Cox2, 
INOS, DR5 and survivin) were assessed for expression 
of mRNA in D54 MG cells 2  h after exposure to 2  Gy 
radiation using quantitative RT-PCR. Radiation provided 
using a 60Co therapy unit (Picker, Cleveland, OH).

Construction of adenovirus with proposed radiation 
inducible promoter
We constructed recombinant CMV Ad and Ad/Luc 
(encoding the luciferase reporter gene, a kind gift of Rob-
ert D. Gerard university of Leuven, Belgium) Ad/GFP 
(encoding the reporter green fluorescent protein) or Ad/
LacZ (encoding the Escherichia coli b galactosidase gene, 
provided by De-chu Tang, university of Alabama at Bir-
mingham, Birmingham, AL) driven by different promot-
ers; 0.51 kb of CMV [33], 0.26 kb of survivin [34], 2.6 kb 
of VEGF promoter region [35], 1.2 kb of DR5 [36], flt-1 as 
described before [37]. Reporter genes replaced the E1A 
region in these vectors, under control of human promot-
ers [36, 38]. These replication-deficient adenoviral vectors 
were constructed based on homologous recombination 
between pCMV, pVEGF, pDR5, FLt-1 promoter, or pSur-
vivin shuttle vectors and pVK500 adenoviral backbone 
that contain the entire adenoviral genome with E1A region 
deleted from it. Viruses were propagated in 293 cells, puri-
fied by centrifugation in CsCl gradients, and plaque titered 
in 293 cells following standard protocols [39].

Validation of radiation inducible adenovirus vector 
and selection of potent radiation inducible promoter 
in context of adenoviral vector
D54 MG cells were plated per well in 6-well plates at 
2 ×  105. Then, cells were infected with different multi-
plicity of infection (MOI) of different (promoter) Ad or 
CMV Ad then cells were exposed to a range of radiation 
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(0–12 Gy) at single fraction. Control cells were left with-
out radiation. Fluorescent microscopy, luciferase assay, 
and X-gal staining of the corresponding genes were used 
to detect the level of expression of related genes to con-
trol cells and radiation treated cells after 2 h of radiation 
and 24 h of radiation to select a potent radiation induc-
ible promoter in context of adenoviral vector.

Reporter gene assays
X‑gal assay
Cells were seeded in 24-well plates in quadruplets at 
a density of 5  ×  104  cells/well. The following day, the 
cells were infected with AdDR5-LacZ at an m.o.i. of 100 
in DMEM with 2% FBS for 1  h and then maintained in 
complete medium. For staining, wells were washed with 
1 mM MgCl2 in PBS, and cells were fixed by 0.5% (w/v) 
glutaraldehyde at room temperature, then stained using 
X-gal reaction solution, and incubated at 37  °C until a 
color change was obtained. The end absorbance was then 
measured at 420 nm using a V Max plate reader (Molecu-
lar Devices Corp., Sunnyvale, CA, USA). LacZ activities 
were normalized for differences in incubation times.

EGFP expression assay
Cellular EGFP expression was quantitatively examined by 
FACS analysis and visualized using fluorescent micros-
copy. Cells were collected 48  h after Ad/VEGF-EGFP 
infection and approximately 10,000 cells were illumi-
nated at 488  nm and fluorescence was detected in the 
FITC (525/20  nm) channel. Nonspecific fluorescence 
was detected using a 575/30  nm emission filter in the 
PI channel. EGFP fluorescence is expressed as the mean 
fluorescence signal in EGFP-positive cells in relative 
units [18] after subtraction of background fluorescence. 
An Olympus IX70 inverted microscope system (Olym-
pus America, Melville, NY) was used for the screening of 
EGFP expression in cell monolayers.

Quantitative reverse transcription‑PCR and PCR
Total RNA (5 μg) was isolated by RNeasy kit (Qiagen) and 
used for cDNA synthesis by oligo [18] and SuperScript II 
RNase H reverse transcriptase (Invitrogen). Primers used 
in the reverse transcription-PCR (RT-PCR) assays were 
described before [40, 41]. Quantitative real-time PCR 
using SYBR Green PCR Master Mix (Applied Biosys-
tems) was performed with (Bio-Rad) systems according 
to the manufacturer’s protocol.

Detection of luciferase expression
Standard single luciferase assay (Promega, Madison, WI) 
was used to measure firefly luciferase enzyme activity as 
per the manufacturer’s instruction. For compensation 
of the differences in cell numbers in different samples, 

Bradford protein assay (Bio-Rad, Hercules, CA) was 
used to measure the protein concentration of the lysates. 
Luciferase is presented as normalized to cellular protein 
concentration.

Confirmation of selectivity of survivin as radiation 
inducible promoter in glioma
In order to detect the optimum dose of radiation for fur-
ther applications, D54 MG glioma cell lines were plated 
in six-well plated. The cells were then infected with either 
AdSurvivin-Luc or AdCMV-Luc (1000 viral particles 
per cell). Virus-containing medium was replaced with 
fresh growth medium, after 1-h adsorption. After 24  h, 
cells were irradiated with different doses of 0, 2, 4, 8, and 
12 Gy using a 60Co therapy unit (Picker, Cleveland, OH) 
at a dose of 80  cGy/min. Twenty-four hours later, cells 
were analyzed by luciferase assay to select the optimum 
radiation dose. To ensure the effect of this selected dose 
in different glioma cell lines and to detect the difference 
of survivin expression levels between tumor and normal 
cells the same steps were repeated on D54 MG, U251 
MG and human astrocytes cell lines. Cells were irradi-
ated with the convention selected dose of 2 GY using a 
60Co therapy unit (Picker, Cleveland, OH) and analyzed 
after 24 h by luciferase assay.

All the assays were carried out in quadruplets and sev-
eral independent experiments were performed to verify 
the reproducibility of the results.

Bioinformatics analysis to detect radiation inducible 
elements
We used the NCBI Nucleotide blast database (https://
www.ncbi.nlm.nih.gov/nucleotide/), in order to identify 
the nucleotide sequence of mRNA transcripts of different 
available in-house promoters. These included: 1-survivin 
(NCBI Reference Sequence: NM_001012271.1), 2-FLT-1 
(NCBI Reference Sequence: XM_017020485.1), 3-COX-2 
(NCBI Reference Sequence: Gene Bank: U20548.1), 
4-DR-5(NCBI Reference Sequence: XM_017013944.1), 
5-VEGFA (NCBI Reference Sequence: NM_003376.5), 
6-iNOS (NCBI Reference Sequence: NM_001204218.1).

The CArG motifs were previously described as motifs 
which respond to radiation and are responsible for radia-
tion mediated transcription regulation [31]. Also, it was 
described that CCAAT box (a cis acting element) are sig-
nificantly present with lower frequencies in radio respon-
sive genes in comparison to regular genes [42].

Therefore we used NCBI FASTA sequence finder to 
detect the Number of CAAG motifs and the 10-nucleo-
tide motif of consensus sequence in the CArG [CC (A+T 
rich) 6GG or serum response element] in these promot-
ers. We also screened the promoters using the same soft-
ware for CCAAT box consensus sequence in attempts to 

https://www.ncbi.nlm.nih.gov/nucleotide/
https://www.ncbi.nlm.nih.gov/nucleotide/
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determine a cis acting elements responsible for survivin 
response to radiation.

Statistical analysis
Results are expressed as mean ± SD. Student’s t test was 
used according to the distribution of experimental val-
ues. P values of <0.05 were accepted as significant differ-
ences between groups.

Results
Evaluation of mRNA accumulation as an indicator 
of radiation mediated transcription regulation
Six different human promoters (FLT-1, VEGF, Cox2, 
INOS, DR5 and survivin) were assessed for expression of 
mRNA in D54 MG cells 2 h after exposure to 2 Gy radia-
tion using quantitative RT-PCR. Levels of expression of 
FLT-1, DR5, VEGF, INOS and Cox2 increased twofold to 
threefold, while the survivin gene was upregulated to ~10 
folds as depicted in (Fig. 1), indicating a strong radiation-
inducible promoter. Columns, mean; P < 0.05, compared 
with non-radiated control. However, additional elevation 
of survivin RNA copy number was reported after 24 h of 
radiation.

Radiotherapy increases level of gene expression in the 
context of adenovirus with radiation relevant promoter 
in brain tumor
Adenoviral constructs containing VEGF, DR5, FLT-1 
and survivin promoter driving lacZ, GFP and luciferase 
reporter genes were used for infection of D54 MG cells. 
Fluorescent microscopy was used to detect the effect 
of radiation on VEGF promoter in Ad/GFP as depicted 
in (Fig.  2a). X-gal staining used to detect the effect of 
radiation on DR5 promoter in Ad/LacZ as depicted in 
(Fig.  2b). Total luciferase activity was measured and 
values were normalized to amounts of total protein. 

Experiments were performed in quadruplets using 
replication-deficient adenovirus. CMV promoters a 
strong constitutive gene promoter, producing high basal 
levels of reporter gene expression but shows a negligi-
ble increase on irradiation [43]. Therefore, results are 
shown before and after 24 h of radiation, as a percent-
age of CMV promoter-induced luciferase expression. 
We have found that Ad/VEGF-Luc and AdDR5-Luc 
AdFLT1-LUC showed an increase luciferase expression 
in response to radiation by 1.25-fold in VEGF, 2.5 fold 
in DR5 and twofold in FLT-1, as depicted in (Fig.  2c). 
Ad/survivin-Luc however showed a fivefold increase in 
response to radiation suggesting also strong radiation-
inducible promoter. Columns, mean; P < 0.05, compared 
with non-radiated control. For quantification, maxi-
mum projections and total fluorescence measurements 
were performed with Image J and the corrected total 
cell fluorescence (CTCF) was calculated using the for-
mula CTCF =  Integrated Density −  (Area of selected 
cell × Mean fluorescence of background readings) data 
not shown.

Radiation induces different levels of gene expression 
by adenovirus with survivin promoter at different doses
To detect the optimal dose of radiation, glioma cell lines 
(D54 MG) were infected with constructed adenoviral 
particles (1000 viral particles per cell) containing the 
luciferase gene under either control of survivin or CMV 
promoters. After viral infection, we conducted a dose–
response assay exposing cells to different fractions of 
radiation as shown in (Fig. 3) and grown for an additional 
24  h. Total luciferase activity was measured and values 
were normalized to amounts of total protein. Experi-
ments were performed in quadruplets. The maximum 
response to radiation exposure was observed at dose 
2  Gy (~3-fold) with higher doses, the response dimin-
ished to 1.5-fold, as depicted in Fig. 3.

We therefore considered 2  Gy the optimum dose for 
radiation. Columns, mean; bars, SD, P < 0.05, compared 
with non-radiated control.

Radiation induces high level of gene expression 
by adenovirus with survivin promoter in different glioma 
cell lines
Different glioma cell lines D54 MG, U251 MG and 
human astrocytes were infected with Ad-survivin and 
exposed to the selected dose of 2 Gy. The luciferase activ-
ity was assessed before radiation and 24  h after radia-
tion. Survivin promoter showed an increase in expression 
from 30 to 99% in glioma cell lines after 2 Gy of radiation 
compared to non-irradiated cells as depicted in (Fig. 4). 
The difference in survivin expression between glioma cell 
lines and normal human astrocytes suggest that survivin 

Fig. 1 Effect of radiation on mRNA expression of different genes 
promoters
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Fig. 2 a Fluorescent microscopy detecting effect of radiation on GFP reporter gene driven by VEGF promoter. b X-gal staining detecting effect of 
radiation on LacZ reporter gene driven by DR5 promoter. c Effect of radiation on different promoters as detected by Luciferase assay
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is a tumor selective promoter. Columns, mean; bars, SD, 
P < 0.05, compared with non-radiated control.

CARG Radiation inducible elements and other cis acting 
elements detection
After using NCBI nucleotide database to identify the 
nucleotide base sequence of the promoters used in this 
experiment, FASTA sequence finder was used to deter-
mine the presence of elements responding to radiation 
previously described. Variable number of CAAG ele-
ments was detected in the promoters independently from 

their response to radiation. Also, the CArG box which 
has been shown to be responsible for egr-1 increased 
transcription in response to radiation has not been 
detected in any of the promoters used in this experiment 
as depicted in Table 1. Therefore we concluded that radi-
ation mediated transcription regulation is not dependent 
on CArG elements only

Using NCBI nucleotide database and FASTA sequence 
finder we screened all the promoters for CCAAT box 
consensus. iNOS promoter with the lowest response 
to radiation had higher number of CCAAT (n =  14) as 
depicted in Fig. 5, while Survivin with the best response 
to radiation revealed two CCAAT boxes (n =  2) in its 
sequence as depicted in Fig. 6. The other promoters had 
numbers of this consensus ranging between these 2 val-
ues (data not shown). 

Discussion
Treatment of brain tumors, especially GBM represents 
a great challenge [44, 45]. The standard GBM treatment 
includes surgical resection, radiation, and chemotherapy. 
Although, there has been an emergence of many innova-
tions and advances in chemotherapy and radiation ther-
apy, none of them have prevented recurrence [46, 47]. 
Rather they have only provided longer survival times. 
Radiogenetic therapy, is a novel approach that offers a 
combination model aiming to circumvent the obstacles 
faced by conventional treatments. It employs targeted 
viral vectors delivery of therapeutic transgenes under 
the control of radiation responsive promoters. Enhanc-
ing viral replication by using tumor selective promoters 
is likely to enhance virotherapy [48, 49]. This strategy 
would restrict therapeutic gene activation to tumor cells 
and/or irradiated tissues only, thereby providing selec-
tive expression for any tumor-located vector. Since gene 
activation would be controlled, damage to surrounding 
normal tissue would be reduced, thereby improving the 
therapeutic ratio replication such as targeting and tran-
scription regulation. In this study we tried a combined 
technique of radiation plus transcription regulation to 
prove the principle of regulating gene expression.

Understanding the molecular bases and mechanisms 
responsible for radiation mediated transcription regula-
tion is crucial for better understanding of this approach 
and for classifying and selecting the best radioinduc-
ible gene promoter. Elements regulating transcriptional 

Fig. 3 Effect of different doses of radiation on gene expression 
driven by survivin promoter
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Table 1 Number of CArG and CAAG elements in different promoters

Survivin FLT‑1 DR‑5 VEGF COX‑2 iNOS

CAAG elements 21 83 58 36 17 167

CArG box [CC (A+T rich) 6GG] 0 0 0 0 0 0
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Fig. 5 Detetction of CCAAT box (a cis acting element) in iNOS promoter nucleotide sequence
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process are composed of both cis-acting and trans-acting 
elements [50, 51]. The cis-acting elements comprise pro-
moters as well as enhancer regions (ex: CArG box, TATA 
box and CCAAT) that regulate expression of a distinct 

gene [52]. The trans-acting elements are related to a 
group of transcription factors that bind to specific sites 
within promoter and/or enhancer regions [53, 54]. Con-
trolling the transcription of therapeutic gene expression 

Fig. 6 Detetction of CCAAT box (a cis acting element) in Survivin promoter nucleotide sequence
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[55] by using promoters that are radiation-responsive 
offers an attractive platform for the combination of radia-
tion therapy and gene therapy [56].

We and others showed in this study, and other stud-
ies [57–59], that the survivin promoter in comparison 
to other promoters may represent an optimal radiation 
inducible promoter and provide compelling data to sug-
gest that radiation, a mainstay of glioma therapy, further 
improves survivin-mediated adenoviral gene expression 
in targeted cells, which is a finding that might have sig-
nificant implications for patients who may one day be 
treated with this virus and subsequently receive radio-
therapy. Also, the difference in survivin expression levels 
between glioma cells and normal astrocytes suggest its 
tumor selectivity and potential safety in sparing normal 
cells from aggressive therapies.

In attempts to explain the radiosensitivity of survivin 
promoter, we screened all the promoters used in this 
experiment for the presence of CArG radio responsive 
motifs first described in EGR-1 promoter. The egr-1 was 
the first promoter described more than 2 decades ago to 
be responsive to radiation [27, 60, 61]. Functional analy-
sis of Egr-1 revealed a number of DNA sequence motifs 
including GCGGGGGCG that can modulate the radia-
tion-mediated response [31]. Ionizing radiation can read-
ily induce the Egr-1 promoter via a 10-nucleotide motif of 
consensus sequence in the CArG (CC (A+T rich) 6GG 
or serum response element) [31, 62–65]. In our study 
we have analyzed several radio responsive promoters 
for the CArG elements. None of these sequences were 
detected in any promoters. Adding to that the number of 
CAAG sequence in all promoters was independent from 
response to radiation.

Additionally, our team as well as others have shown 
that radiation increased the number of survivin RNA 
transcripts in cells [57, 58, 66]. Therefore we do believe 
that elements other than CArG may be responsible for 
survivin radiosensitivity. Of note, it was concluded before 
that CCAAT box play a gene-specific transcriptional role 
depending on the type of gene [67]. Since survivin pro-
moter has no TATA box, these sequences are involved in 
gene expression and cell cycle regulation. Therefore, they 
might also be responsible for radiosensitivity of survivin. 
Interestingly, a study by Wu et al. [68] correlated low fre-
quency presence of CCAAT motifs to radio responsive 
genes. Following this concept we screened the promoters 
used in these study for this motif consensus. Our results 
came in accordance to this correlation where survivin 
promoter, with the best response to radiation, had the 
lowest number of CCAAT box motifs in comparison to 
other promoters tested. These preliminary results require 
future mutational analysis of different promoters in order 
to explore the mechanism behind radiation mediated 

transcription regulation and larger sample size to corre-
late between the different numbers of cis acting element 
in a given promoter and its response to radiation.

To this end we conclude that survivin is a selective 
potent radiation inducible promoter for glioma and 
CArG motifs are not the only elements involved in radia-
tion mediated transcription regulation.
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