98 research outputs found

    First evidence of achiasmatic male meiosis in the water bears Richtersius coronifer and Macrobiotus richtersi (Eutardigrada, Macrobiotidae)

    Get PDF
    Chromosome behaviour during male meioses has been studied in two bisexual amphimictic populations of two tardigrade species, namely Richtersius coronifer and Macrobiotus richtersi (Eutardigrada, Macrobiotidae). Both bisexual populations exhibit a diploid chromosome number 2n = 12 and no sex chromosomes were identified. DAPI staining and C-banding data indicate that all chromosomes of the bisexual population of R. coronifer are acrocentric. In both species, at male meiotic prophase, all six bivalent homologous chromosomes are aligned side by side along their length and show no evidence of chiasmata. However, in the oocytes of both species a chiasma is generally present in each bivalent at diplotene stage. Lack of recombination is previously unknown in tardigrades, but is a well known phenomenon in many other metazoans where it is always restricted to the heterogametic sex. In tardigrades there is no evidence of heterochromosomes, but it does not mean that in tardigrades, the heterogametic sex does not exist. The adaptive and evolutionary significance of achiasmatic meiosis is discussed

    Will the Antarctic tardigrade Acutuncus antarcticus be able to withstand environmental stresses related to global climate change?

    Get PDF
    Because conditions in continental Antarctica are highly selective and extremely hostile to life, its biota is depauperate, but well adapted to live in this region. Global climate change has the potential to impact continental Antarctic organisms because of increasing temperatures and ultraviolet radiation. This research evaluates how ongoing climate changes will affect Antarctic species, and whether Antarctic organisms will be able to adapt to the new environmental conditions. Tardigrades represent one of the main terrestrial components of Antarctic meiofauna; therefore, the pan-Antarctic tardigrade Acutuncus antarcticus was used as model to predict the fate of Antarctic meiofauna threatened by climate change. Acutuncus antarcticus individuals tolerate events of desiccation, increased emperature and UV radiation. Both hydrated and desiccated animals tolerate increases in UV radiation, even though the desiccated animals are more resistant. Nevertheless, the survivorship of hydrated and desiccated animals is negatively affected by the combination of temperature and UV radiation, with the hydrated animals being more tolerant than desiccated animals. Finally, UV radiation has a negative impact on the life history traits of successive generations of A. antarcticus, causing an increase in egg reabsorption and teratological events. In the long run, A. antarcticus could be at risk of population reductions or even extinction. Nevertheless, because the changes in global climate will proceed gradually and an overlapping of temperature and UV increase could be limited in time, A. antarcticus, as well as many other Antarctic organisms, could have the potential to overcome global warming stresses, and/or the time and capability to adapt to the new environmental conditions

    Heat-shock protein in encysted and anhydrobiotic eutardigrades

    Get PDF
    The Heat shock proteins (Hsps) can help organisms to survive environmental stresses. Tardigrades are aquatic metazoans able to colonize unpredictable, or “hostile to life”, terrestrial habitats entering resting stages such as cysts and anhydrobiotic tuns. In this paper we compared the Hsp70 and Hsp90 expression between resting stages (tuns or cysts) and active hydrated specimens of two eutardigrade species, namely Bertolanius volubilis and Ramazzottius oberhaeuseri. The two species partly differ in the kind of dormant stages utilized and in habitats colonized. In both species desiccation stress did not induce an up-regulation of either Hsps. Our data, together with those from literature, suggest that in tardigrades Hsps are involved in repairing molecular damages after anhydrobiosis, rather than in the stabilization of molecules during the dry state. Finally, the first demonstration of the presence of Hsps in diapausing cysts of B. volubilis are reported and discussed

    High diversity in species, reproductive modes and distribution within the Paramacrobiotus richtersi complex (Eutardigrada, Macrobiotidae)

    Get PDF
    For many years, Paramacrobiotus richtersi was reported to consist of populations with different chromosome numbers and reproductive modes. To clarify the relationships among different populations, the type locality of the species (Clare Island, Ireland) and several Italian localities were sampled. Populations were investigated with an integrated approach, using morphological (LM, CLSM, SEM), morphometric, karyological, and molecular (18S rRNA, cox1 genes) data. Paramacrobiotus richtersi was redescribed and a neotype designed from the Irish bisexual population. Animals of all populations had very similar qualitative and quantitative characters, apart from the absence of males and the presence of triploidy in some of them, whereas some differences were recorded in the egg shell. All populations examined had the same 18S haplotype, while 21 haplotypes were found in the cox1 gene. In four cases, those qualitative characters were correlated with clear molecular (cox1) differences (genetic distance 14.6\u201321.8%). The integrative approach, which considered the morphological differences in the eggs, the reproductive biology and the wide genetic distances among putative species, led to the description of four new species (Paramacrobiotus arduus sp. n., Paramacrobiotus celsus sp. n., Paramacrobiotus depressus sp. n., Paramacrobiotus spatialis sp. n.) and two Unconfirmed Candidate Species (UCS) within the P. richtersi complex. Paramacrobiotus fairbanksi, the only ascertained parthenogenetic, triploid species, was redescribed and showed a wide distribution (Italy, Spain, Poland, Alaska), while the amphimictic species showed limited distributions. The difference in distribution between apomictic and amphimictic populations can be explained by the difference in the dispersal potentials associated with these two types of reproduction

    Nature, Source and Function of Pigments in Tardigrades: In Vivo Raman Imaging of Carotenoids in Echiniscus blumi

    Get PDF
    Tardigrades are microscopic aquatic animals with remarkable abilities to withstand harsh physical conditions such as dehydration or exposure to harmful highly energetic radiation. The mechanisms responsible for such robustness are presently little known, but protection against oxidative stresses is thought to play a role. Despite the fact that many tardigrade species are variously pigmented, scarce information is available about this characteristic. By applying Raman micro-spectroscopy on living specimens, pigments in the tardigrade Echiniscus blumi are identified as carotenoids, and their distribution within the animal body is visualized. The dietary origin of these pigments is demonstrated, as well as their presence in the eggs and in eye-spots of these animals, together with their absence in the outer layer of the animal (i.e., cuticle and epidermis). Using in-vivo semi-quantitative Raman micro-spectroscopy, a decrease in carotenoid content is detected after inducing oxidative stress, demonstrating that this approach can be used for studying the role of carotenoids in oxidative stress-related processes in tardigrades. This approach could be thus used in further investigations to test several hypotheses concerning the function of these carotenoids in tardigrades as photo-protective pigments against ionizing radiations or as antioxidants defending these organisms against the oxidative stress occurring during desiccation processes

    Il progetto "Piccoli Scienziati": un approccio narrativo alle scienze per insegnanti in servizio

    Get PDF
    Questo articolo presenta i principali riferimenti teorici alla base del progetto, per poi approfondire gli aspetti metodologici e didattici, con particolare riferimento alla narrazione e alla struttura verticale del curricolo proposto; seguono esempi di attivit\ue0 tratte da un segmento del percorso e infine viene illustrata la modalit\ue0 di formazione degli insegnanti, cos\uec come \ue8 stata messa a punto negli anni si sperimentazione del progetto

    Energy allocation in two species of Eutardigrada

    Get PDF
    To improve our knowledge on life histories in tardigrades and the energy allocated for their reproduction and growth, we have studied two species (Macrobiotus richtersi and Hypsibius convergens) differing in evolutionary histories, diet and ways of oviposition. For both species we considered a bisexual population dwelling in the same substrate. In both species we investigated energy allocations in males with a testis rich in spermatozoa and females with an ovary containing oocytes in advanced vitellogenesis. The age of the specimens were estimated on the basis of buccal tube length and body size and the body and gonad areas were calculated using an image analysis program. In both species females reach a larger size than males. Macrobiotus richtersi has significantly longer buccal tube and wider body area than H. convergens. Statistical analyses show that buccal tube has a positive correlation with body area and gonad area. For an estimate of the relative energy allocated for reproduction in one reproductive event (relative reproductive effort = RRE), we have used the ratio between gonad area and body area. In males of both species, the absolute amount of energy and the RRE is statistically lower than that of females. Males and females of H. convergens have a RRE higher than those of M. richtersi. In M. richtersi, the gonad increases proportionally more when animals are large (old), whereas in H. convergens this direct relationship is not detectable. In M. richtersi the energy allocated for a reproductive event increases during the life of the females. In males, the increase of the gonad size is progressive during the animal life. In each reproductive event, females of H. convergens allocate a lower amount of energy in absolute value when compared to M. richtersi. Nevertheless, when considering the RRE, their investment is higher than that of M. richtersi

    Space Flight Effects on Antioxidant Molecules in Dry Tardigrades: The TARDIKISS Experiment

    Get PDF
    The TARDIKISS (Tardigrades in Space) experiment was part of the Biokon in Space (BIOKIS) payload, a set of multidisciplinary experiments performed during the DAMA (Dark Matter) mission organized by Italian Space Agency and Italian Air Force in 2011. This mission supported the execution of experiments in short duration (16 days) taking the advantage of the microgravity environment on board of the Space Shuttle Endeavour (its last mission STS-134) docked to the International Space Station. TARDIKISS was composed of three sample sets: one flight sample and two ground control samples. These samples provided the biological material used to test as space stressors, including microgravity, affected animal survivability, life cycle, DNA integrity, and pathways of molecules working as antioxidants. In this paper we compared the molecular pathways of some antioxidant molecules, thiobarbituric acid reactive substances, and fatty acid composition between flight and control samples in two tardigrade species, namely, Paramacrobiotus richtersi and Ramazzottius oberhaeuseri. In both species, the activities of ROS scavenging enzymes, the total content of glutathione, and the fatty acids composition between flight and control samples showed few significant differences. TARDIKISS experiment, together with a previous space experiment (TARSE), further confirms that both desiccated and hydrated tardigrades represent useful animal tool for space research

    Experiences with dormancy in tardigrades.

    Get PDF
    Tardigrades often colonise extreme habitats, in which they survive using both types of dormancy: quiescence and diapause. Together with nematodes and bdelloid rotifers, tardigrades are known to enter quiescence (with several forms of cryptobiosis: anhydrobiosis, cryobiosis, anoxybiosis, osmobiosis) at any stage of their life cycle, from egg to adult. Entering anhydrobiosis, tardigrades contract their body into a so-called tun, loosing most of their free and bound water (> 95%), synthesizing cell protectants (e.g., trehalose, glycerol, heat shock proteins) and strongly reducing or suspending their metabolism. Our research on cryptobiosis focused on some ecological and evolutionary aspects. We evaluated: i) the long-term anhydrobiotic survival by comparing quantitative data on recovery from naturally induced desiccation in several species of tardigrades; ii) differences in survival patterns between species and populations by experimentally inducing anhydrobiosis and cryobiosis; iii) phenotypic factors affecting anhydrobiotic survival. As regards diapause, we considered encystment and eggs. Encystment involves at least the synthesis of new cuticular structures. Morphological changes during cyst formation are more complex than those involved in tun formation. We analyzed more in detail encystment processes, comparing a semiterrestrial with a limnic species. Several inter-specific differences have been identified, other than the production of two types of cysts in the semiterrestrial species. Our analysis of life history traits of a laboratory reared strain of a soil tardigrade revealed a particular hatching phenology that involved the production of both subitaneous and resting eggs. The latter need a cue to hatch (dehydration followed by re-hydration). In addition, the evolutionary meaning of dormancy in tardigrades is discussed
    • …
    corecore