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Abstract

Tardigrades are microscopic aquatic animals with remarkable abilities to withstand harsh physical conditions such as
dehydration or exposure to harmful highly energetic radiation. The mechanisms responsible for such robustness are
presently little known, but protection against oxidative stresses is thought to play a role. Despite the fact that many
tardigrade species are variously pigmented, scarce information is available about this characteristic. By applying Raman
micro-spectroscopy on living specimens, pigments in the tardigrade Echiniscus blumi are identified as carotenoids, and their
distribution within the animal body is visualized. The dietary origin of these pigments is demonstrated, as well as their
presence in the eggs and in eye-spots of these animals, together with their absence in the outer layer of the animal (i.e.,
cuticle and epidermis). Using in-vivo semi-quantitative Raman micro-spectroscopy, a decrease in carotenoid content is
detected after inducing oxidative stress, demonstrating that this approach can be used for studying the role of carotenoids
in oxidative stress-related processes in tardigrades. This approach could be thus used in further investigations to test several
hypotheses concerning the function of these carotenoids in tardigrades as photo-protective pigments against ionizing
radiations or as antioxidants defending these organisms against the oxidative stress occurring during desiccation processes.
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Introduction

Tardigrades, or water bears, are microscopic aquatic animals

(100–1000 mm in length), most of which belong to the group of

desiccation-tolerant multicellular organisms [1,2]. Although

tardigrades colonized a wide range of ecosystems and habitats

all over the world, the highest number of species is found in

terrestrial ecosystems where they often constitute the major

component of the fauna in lichens and mosses. These habitats

provide a ‘‘sponge-like’’ environment featuring a myriad of

small pockets of water, in which tardigrades live. Such habitats,

however, are subject to occasional periods of desiccation or

freezing: as mosses and lichens lose water, tardigrades desiccate

or freeze consequently, entering in physiological states called

‘‘anhydrobiosis’’ and ‘‘cryobiosis’’, respectively. In such states,

grouped under the general name of ‘‘cryptobiosis’’, metabolic

activity is suspended because of absence of liquid water, until

environmental conditions return favourable [1,2]. Tardigrades

can persist in the anhydrobiotic state even for years, during

which they are able to withstand several physical and chemical

extremes [1–5], including exposure to vacuum and both solar

and cosmic ionizing radiation as found in low Earth orbit space

[3,4,6,7]. Remarkably, even in their hydrated active state,

tardigrades show an unexpectedly high survival rate upon

freezing (even with temperatures as low as 2196uC) [8,9] or

exposure to high levels of ionizing radiations [3,5]. The

biochemical and physiological mechanisms underlying the

extraordinary resistance of both desiccated and hydrated

tardigrades to such harsh conditions are currently little known

and constitute an intriguing challenge for biologists and

biochemists.

Regardless of the wide range of colonised environments,

tardigrades do not exhibit a great variation in internal organ

structure and organization. Their body, invariably constituted by

an anterior region (or head region) followed by four trunk

segments with a pair of legs each, is covered by a chitinous cuticle

that must be shed as the organism grows and by a monolayer of

flat epidermal cells [10]. All tardigrades have muscular, nervous,

reproductive and digestive systems, and their body cavity, which is

rich in free-floating storage cells, allows efficient nutrition and gas

exchange with no need for circulatory or respiratory systems [10].

However, in spite of this uniformity in body structure, tardigrades

exhibit a variety of pigmentations: several tardigrade species are

translucent or whitish, but many other are colored, sometimes

markedly, with a variety of shades of red-orange, brown, green

and yellow pigments [10,11]. These pigments can be uniformly or

unevenly distributed in the body cavity, or may be located in

storage cells or in the epidermis cells. Sometimes, the animal

pigmentation may be caused by gut content [10,11]. Moreover,

dark or red pigmented eye-spots may be present on the head

region in close association with the outer dorso-lateral lobe of the
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brain, depending on the genus or species [10,12]. Each eye-spot

consists of a single pigment cup cell, filled with spherical electron-

dense pigmented granules, one or two microvillous sensory cells,

and ciliary sensory cells [12].

Within tardigrades, the genus Echiniscus is the most rich in the

number of species, and most of them are brightly coloured [13].

Despite the occurrence of pigments is well documented for many

Echiniscus species and many other genera belonging to the family

Echiniscidae, their chemical nature as well as their function

remains unknown, especially in relation to their resistance to harsh

physical and chemical conditions. Some hypotheses were formu-

lated about these pigments [14,15], but to the best of our

knowledge no direct and conclusive experimental proof about

their structure, source or function has been reported. In order to

resolve these open questions, approaches involving techniques

capable of performing in-vivo chemical analysis on single

tardigrades are highly desirable. The low sample quantity

available and the in-vivo requirement rule out most of the

traditional analytical methods such as separation-based, electro-

chemical or mass spectrometry techniques. Raman micro-

spectroscopy, however, has all the characteristics required for

such a task.

Raman spectroscopy is a non-destructive, semi-quantitative

analytical technique based on the scattering of laser radiation by

vibrating molecules that has proved to be an ideal tool for studying

living cells and biological tissues [16,17]. Information about the

biochemical species present in a sample can be simply obtained by

illuminating it with a low-power laser and then analysing the

scattered light. Since it originates from molecular vibrations,

a Raman spectrum closely depends on molecular structure and is

thus unique to each molecule, in principle allowing the identifi-

cation of chemical species on a spectral basis [18]. The level of

structural detail conveyed by Raman spectroscopy ranges from the

identification of the complete molecular structure to a general

classification of the molecular class of the analyte of interest,

depending on its spectral characteristics as well as on the chemical

complexity of the sample. Moreover, the intensity of the Raman

scattering can be exploited as a ‘‘contrast mechanism’’ to image

the spatial distribution of the main biochemical constituents of

a biological sample (i.e. Raman mapping or imaging).

In this paper we unambiguously identify the pigments in the

heterotardigrade Echiniscus blumi Richters 1903 as carotenoids,

demonstrate their food origin and set-up a method to study their

anti-oxidant function in these animals by in-vivo spectroscopic and

imaging techniques based on Raman scattering. Using this semi-

quantitative methodology based on Raman imaging, changes in

carotenoid content are monitored in living tardigrades undergoing

oxidative stress.

Materials and Methods

Tardigrade Collection
Animals and exuvia with eggs of the moss-dwelling and

anhydrobiotic heterotardigrade Echiniscus blumi Richters 1903

were extracted from the moss Grimmia orbicularis Bruch ex

Wilson growing on a rocky outcrop at Sasso Tignoso (Modena,

Italy; N44u12.8379, E10u33.2379, 1382 m a.s.l.). In order to

extract tardigrades, moss was maintained in water for about

30 min. After soaking, specimens were separated using sieves,

collected under a stereomicroscope and maintained over 4 h in

water (natural mineral water/distilled water; 1:1) at 20uC before

any experiments. No specific permits were required for the

described field studies, which did not involve endangered or

protected species.

Raman Spectroscopy and Imaging Measurements
All Raman and photoluminescence spectra and maps were

acquired using an InVia micro-Raman spectrometer (Renishaw

plc, Wotton-under-Edge, UK) equipped an argon ion laser

emitting 50 mW at 514.5 nm (Modu-Laser, Centerville, UT)

and a motorized stage (Prior, Cambridge, UK). The laser was

focused on samples via a 606objective (N.A. 1.00), its power being

below 1 mW at the sample and kept constant during each

measurement. Raman maps were collected in the fast-imaging

StreamlineTM mode, with acquisition times varying from approx-

imately 3 to 5 min (depending on the map size), and with lateral

resolutions (i.e. step sizes) of 1.1 mm (Fig. 1C), 4.3 mm (Figs. 1B,

1E, 2A, and 3A’) or 5.4 mm (Fig. 4 and Figs S3 ad S4 in SI). Data

pre-processing (cosmic rays removal, baseline correction, normal-

ization) and analysis, as well as image production, was performed

with hyperSpec package (http://hyperspec.r-forge.r-project.org)

for R [19].

For Raman measurements, tardigrades were singularly put in

a drop of water between a CaF2 slide (Crystal GmbH, Berlin,

Germany) and a 15615 mm, 0.5 mm thick glass coverslip, in such

a way that the animals were slightly compressed and unable to

move. After collection of Raman data, each specimen was put

again in water to check its viability on the basis of active

movements of its body. All the data reported were collected from

tardigrades which satisfied the viability criterion before and after

the Raman measurements.

Test to Evaluate the Effects of H2O2 on Tardigrade
Survival
Ten different final concentration of H2O2 (5, 10, 20, 25, 35, 45,

55, 65, 75 and 150 mM) were tested. For each H2O2 concentra-

tion, five replicates each of 5 hydrated animals were immersed for

15 min in 300 ml of H2O2 (30% w/w) in water at 20uC. Then,
animals were transferred in water and their viability was verified

after 1 h and 24 h from the end of the stress. As control, 5

replicates each with 5 tardigrades were maintained in water for

15 min at 20uC. The survival of E. blumi treated with H2O2 is

shown in SI (Fig. S2). The percentage survival of control

tardigrades was 100%.

Measurements of Carotenoids Content in Tardigrade
before and after H2O2 Treatment
Oxidative stress was individually induced in 8 E. blumi

specimens (i.e. 8 independent replicates: experimental group)

upon exposure to 300 ml of H2O2 25 mM for 15 min at 20uC. As
control group, 8 specimens individually (i.e. 8 independent

replicates) maintained in water for 15 min at 20uC were used.

For each specimen in the experimental group, two Raman maps

were collected, one before H2O2 exposure and the other one 1 h

after the end of H2O2 exposure. For the control group, the two

Raman maps were collected immediately before and 1 h after

immersion in water. For both the experimental and control

groups, the tardigrade viability was checked after the former

Raman map collection, after H2O2 exposure, after the latter

Raman map collection, and 24 h after the end of treatment.

A first estimate of the total carotenoid content in E. blumi

specimens was made upon comparing the intensity of the average

Raman spectrum of the map of each animal before and after

H2O2 exposure. Spectra associated to background pixels were not

taken into account for averaging. For a more accurate estimate,

histograms were calculated and compared, showing the distribu-

tion of the integrated Raman intensity calculated for the n1 band
(1460–1570 cm21). The total integrated Raman intensity for the same

Nature and Function of Pigments in Tardigrades
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band was calculated by summing the integrated intensities from all

the spectra in a map, and it was taken as a third estimate of the

total carotenoid content.

Results

Carotenoid Nature and Localization of the Pigments
The typical average Raman spectrum of living E. blumi

specimens (Fig. 1) is completely dominated by characteristic

carotenoid bands which are observed in spectra excited with a blue

or green laser, such as the intense n1 band at 1521 cm21 arising

from stretching vibrations of conjugated C=C bonds [20]. Bands

due to other usual biochemical species such as proteins, sugars,

lipids and nucleic acids are not observed because their Raman

signal is overwhelmed by carotenoid bands, whose intensity is

selectively enhanced by several orders of magnitude via the

resonance Raman (RR) effect [20,21].

A Raman shift of 1521 cm21 for the n1 band, the relatively

weak n4 band at 962 cm21 and the intensity pattern for the n2
bands cluster (between 1150 and 1200 cm21) suggest an average

molecular structure for carotenoids consisting of an undistorted,

linear main carbon chain having 11 conjugated C=C double

bonds in an ‘‘all-trans’’ configuration [20,22,23].

A qualitative picture of the spatial distribution of pigments

within E. blumi specimens can be visualized upon mapping the

Raman intensity of the most intense carotenoid band (Fig. 1).

Carotenoids are present inside the whole body cavity, but they

appear to be absent in the outer layer of the animal (i.e. cuticle and

epidermis) as well as in the claws and in the buccal-pharyngeal

apparatus (which is located within the head region). In the

tardigrade investigated in Fig. 1, the carotenoid concentration in

the body cavity is higher than in the region corresponding to the

gut (Fig. 1B), which appears as a dark pigmented area in the

middle of the animal body (Fig. 1A). Not all the specimens

investigated present such differences in carotenoid concentration

between the gut and the body cavity (see Figs. S3 and S4 in SI).

On the other hand, all the tardigrades examined in this study show

an overall decrease of carotenoid concentration in the head region,

with the exception of two small round areas corresponding to the

tardigrade eye-spots, where the carotenoid concentration is higher

(Fig. 1C). The same carotenoids observed in the body cavity

appear to be present, although with a more homogeneous

distribution, in the yolk of E. blumi eggs (Fig. 1E), whose average

Raman spectrum (Fig. 1F, bottom) is identical to that of the animal

(Fig. 1F, top). Conversely, the exuvium (i.e. the cuticle left by

tardigrades during moulting and used as container for the laid

eggs) does not show carotenoid Raman bands, further indicating

that the cuticular structures of this species lack such pigments.

Upon a more detailed analysis, slight differences in band

position and relative intensities appear between spectra from

different parts of the tardigrade body (Fig. 2). Specifically, the ratio

between the intensities of the n1 and the n2 bands in the spectra of

carotenoids localized in the body cavity and in the eye-spots is

higher than that of carotenoids in the gut (Fig. 2A, B; pixels in red

correspond to higher intensity ratio), indicating a variation in the

relative composition of the molecular structure between the

pigments located in those different parts of the tardigrade. As

a further indication of such differences, there is an inverse

correlation between the n1/n2 intensity ratio and the position of

the n1 band (Fig. 2B’), so that in spectra with a higher ratio the n1

Figure 1. Raman maps of carotenoid pigments in E. blumi. (A) Bright field micrograph and (B,C) intensity Raman maps of a living E. blumi;
Raman map C covers the anterior region of the tardigrade (white rectangle in map B). (D) Bright field micrograph and (E) intensity Raman map of an
exuvium containing three eggs of E. blumi. (F) Average Raman spectra (black) and intensity standard deviation (grey) of Raman maps B and E; spectral
intensity was re-scaled for better comparison. All Raman maps depict the relative concentration of carotenoid species, measured as the integrated
Raman intensity between 1501 cm21 and 1541 cm21, corresponding to the intense n1 C =C stretching vibration band of carotenoids. In C, white
arrows indicate spots with high carotenoid concentration corresponding to the eye-spots. The color scale bar on the right of each Raman map has
units of total photon counts/Dcm21 for the Raman shift interval considered.
doi:10.1371/journal.pone.0050162.g001
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band occurs at a slightly lower Raman shift, with a maximum

difference of 2 cm21. Such differences in Raman shift of the n1
band for carotenoids localized in the gut of tardigrade suggest that

they have a lower number of conjugated C=C bonds with respect

to the carotenoids observed in the body cavity.

Dietary Origin of the Pigments
Raman spectra collected from leaves of the moss G. orbicularis,

which constitutes the habitat of E. blumi population considered in

this paper, are identical to those acquired from the animal’s gut

(Fig. 3), indicating that the carotenoids observed in the tardigrade

are the same as those present in the moss, thus revealing their

dietary origin. As inferred from the average Raman intensities,

carotenoids are much (i.e. approximately 20 times) less concen-

trated in moss leaves than in the tardigrade (Fig. S1). The presence

of moss cellular material in the digestive system of this tardigrade is

further confirmed by the occurrence of characteristic chlorophyll

fluorescence bands in the photoluminescence emission spectra

(Fig. 3A) collected from the gut of the same specimen investigated

in Figs. 1 and 2. Upon mapping fluorescence intensity at 670 nm,

chlorophyll appears to be specifically found in the tardigrade gut

(Fig. 3A’), co-localized with those carotenoids having a lower n1/n2
intensity ratio and a n1 band at 1523 cm21 (blue area in Fig. 2A),

which are the same spectral features of moss carotenoids (Fig. 3B).

Semi-quantification of Oxidative Stress-related Effects on
the Pigments
Experiments on E. blumi specimens showed that the percentage

survival, at both 1 h and 24 h after inducing the oxidative stress,

sharply decreased upon exposure to H2O2 concentrations higher

than 65 mM, reaching 0% at 150 mM (see Fig. S2 in SI).

According to these data we decided to induce oxidative stress

upon exposing tardigrades to 25 mM H2O2 (i.e. a concentration

permitting high stress compatible with high survival) and then, by

exploiting the correlation between the concentration of carote-

noids and the intensity of their Raman signal [18,24,25], to

perform a semi-quantitative analysis of these pigments in living

tardigrades before and after H2O2 exposure.

Figure 2. Variety of spectral characteristics for carotenoids
within a E. blumi specimen. (A) Image depicting the n1/n2 band
intensity ratio (‘‘IR’’, color scale bar on the right) for the Raman map
shown in Fig. 2B. (B) Average normalized intensity of the two subsets of
spectra having the lowest and the highest n1/n2 ratio, in blue (IR,1.2,
26 spectra) and red (IR.1.45, 21 spectra), respectively; for each subset,
the intensity of standard deviation is reported in grey. (B’) Inset with
detail of n1 bands.
doi:10.1371/journal.pone.0050162.g002

Figure 3. Food origin of carotenoids. (A) Photoluminescence
emission spectrum from the gut of a living E. blumi (excitation at
514.5 nm). Raman bands due to carotenoids (dotted box) are observed
together with the chlorophyll fluorescence emission bands at 670 and
737 nm; (A’) inset with fluorescence intensity map (emission at
670 nm); black bar is 50 mm, grey scale bar on the bottom of the
Raman map has units of counts at 670 nm. (B) Bottom spectrum:
average normalized spectrum (black) and intensity standard deviation
(grey) of a set of 300 Raman spectra collected from the moss leaves of
G. orbicularis; top spectrum: Raman spectrum from tardigrade’s gut
(dotted box in A).
doi:10.1371/journal.pone.0050162.g003

Nature and Function of Pigments in Tardigrades
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In tardigrades exposed to induced oxidative stress, carotenoid

Raman bands clearly decrease in intensity (Fig. 4A–C) with respect

to the control group (Fig. 4D–F), indicating a decrease in the

amount of carotenoids. This decrease in the carotenoid content

upon H2O2 exposure has been observed for all the 8 specimens of

the experimental group (Figs. S3 and S6 in SI), all of which passed

the viability criteria after the oxidative stress. Conversely, the 8

specimens of the control group, all of which passed the viability

criteria after the collection of Raman maps, did not show any

significant decrease in Raman intensity of the carotenoid bands

(Figs. S4 and S6 in SI).

It should be noted that un-treated specimens, in both

experimental and control groups, showed remarkable inter-

individual differences in total carotenoid content, as inferred from

the total integrated Raman intensity.

Discussion

Massonneau and May hypothesized the carotenoid nature of

the pigments in Echiniscus tardigrades on the basis of solubility tests

and chemical reactions [15]. However, since their work in 1950,

no other experimental proof has been reported to corroborate

their proposition, which remained a well-grounded hypothesis.

The Raman spectra reported in this paper definitely decide this

issue, unambiguously identifying these pigments as carotenoids

having on average a main carbon chain with 11 conjugated C=C

bonds in an ‘‘all-trans’’ configuration. Raman spectroscopy alone,

however, is hardly capable of unambiguously identifying in-

dividual types of carotenoids occurring in biological samples

[20,26]. This difficulty mainly arises from the fact that carotenoids,

in spite of the variety of terminal substituents characterising the

individual carotenoid species, all share the same fundamental

structure of conjugated C=C double bonds, which is responsible

for the intense resonant Raman spectra. This holds true also for

carotenoids present in E. blumi, for which no information other

than the average number of conjugated C=C bonds and their

conformation can be directly inferred from Raman data. The

small intensity standard deviation for the Raman maps of E. blumi,

however, yields information about the chemical homogeneity of

carotenoid species present in this tardigrade species, suggesting the

occurrence of carotenoids all having similar molecular structures.

A more complete picture of the number and types of carotenoids

present in E. blumi could perhaps be achieved by using several

Figure 4. Effect of induced oxidative stress on the carotenoid content. (A–B, D–E) Histograms of the integrated Raman intensity in the 1460–
1570 cm21 region from Raman maps of two living E. blumi specimens before any treatment (A, D) and after exposure to 25 mM hydrogen peroxide
(B, treated) or water (E, control) for 15 min. For each histogram, the corresponding intensity Raman map depicting the carotenoids distribution (i.e.
the intensity at 1521 cm21) is shown as inset. White scale bars = 200 mm, color scale bars have units of counts. (C, F) Average spectra of the Raman
maps before (red) and after (blue) exposure to hydrogen peroxide (maps in A, B) or water (maps in C, D).
doi:10.1371/journal.pone.0050162.g004
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other wavelengths for Raman excitation (e.g. 413 nm and 488 nm)

[27]. Although a multi-wavelength mapping analysis on the same

animal could present some difficulties (the animal must be kept

alive and still under the microscope for tens of minutes), this

approach is definitely worth further investigation.

Since the Raman data presented clearly demonstrate the dietary

origin of carotenoids in tardigrades, further information on the

nature of the carotenoid pigments can be indirectly achieved from

the analysis of the moss constituting the food of these animals. In

particular, the identification of Grimmia moss as the source of

carotenoids allows us to put forward specific hypotheses about the

number and type of carotenoid species detected in the E. blumi

specimens examined. Lutein, zeaxanthin, b-cryptoxanthin and b-
carotene (Fig. S5 in SI) are the most commonly occurring

carotenoids in mosses, and in particular they constitute up to

,90% of the total carotenoids in Grimmia species [28]. In general,

the position of the n1 band in Raman spectra of carotenoids

correlates well with the number of the conjugated double C=C

bonds in their structure [20,22,23]; the average carotenoid spectra

from E. blumi, and in particular spectra from the animal body

cavity, well match the spectra of b-carotene, zeaxanthin and b-
cryptoxanthin, all having 11 conjugated C=C bonds, but not that

of lutein, which only has 10 [22,27]. Moreover, previously

reported chemical reactivity data of Echiniscus pigments [15]

suggest that they do not include oxygen in their structure, leaving

b-carotene as the most likely candidate for the pigmentation in the

tardigrade of the genus Echiniscus.

Interestingly, the differences between the spectra of carotenoids

localized in the gut and those in the body cavity are consistent with

the presence of moss cellular material in the tardigrade gut. Such

spectral differences could be explained considering a selective

uptake of specific moss carotenoids by the tardigrade, as it has

been reported for other animals [29,30]. Indeed, Raman spectra

from moss (both intact leaves or moss cellular material inside the

tardigrade gut) must include spectral contributions from all its

major carotenoids constituents, including lutein, whose n1 band

occurs at Raman shifts higher than 1521 cm21 [22,27]. Thus, the

slight up-shift in the n1 band position for those spectra collected

from the gut with respect to spectra from the body cavity could be

attributed to lutein, which is likely to be present in the moss

cellular material inside the gut but might be less abundant or

absent in the other organs of the tardigrade.

In general, the dietary origin of pigments in E. blumi also well

explains the observed inter-individual variability in the overall

carotenoid content, which may depend both on the quantity of

food ingested and the time passed since the last food intake,

assuming that carotenoids inside the animals are consumed. Since

carotenoids are much less concentrated in the moss than in the E.

blumi body cavity, this tardigrade appears to get these pigments

from moss and accumulate them in its body cavity.

In animals, carotenoids have a diversity of functions: pigmen-

tation with signalling purposes, immunity response, vision and

protection against oxidative damage, among others [31]. In

coloured tardigrades, the function of pigments is disputed.

Because they absorb UV and violet-blue light, carotenoids can

act as light filters protecting against this harmful high-energy solar

radiation [31], which is an indirect cause of oxidative damage to

DNA, lipid membranes, and other cell components, through

inducing the generation of free radicals [31]. The carotenoids

present in tardigrades might well serve this photo-protective

function. The observation that most tardigrade pigmented species

dwell in sun-exposed habitats, such as the glacier surface [11] or

on mosses and lichens growing on rocks located at high altitude

and latitude, well support this hypothesis.

In E. blumi, the same carotenoids found in the body cavity are

present in the eye-spots. Although ultrastructural data about these

visual organs in tardigrades are available, the chemical nature of

their pigments was previously unknown [12]. With the unique

exception of a carotenoid photoactive protein found in cyano-

bacteria [32], carotenoids are not light receptors, but are

nonetheless present in the eyes of several animals, as well as in

humans, affording protection of photoreceptor cells against

damaging radiation or contributing to obtain information re-

garding direction of the light [31]. Also the occurrence of

carotenoids in the yolk of E. blumi eggs is not surprising, since

these molecules are frequently found in high concentrations in

eggs and in reproductive tissues of both vertebrates and

invertebrates [31]. For example, the yolk of the eggs deposited

above waterline by apple snails are supplied with adequate amount

of carotenoids with photo-protective and antioxidant functions, to

allow the development of embryos under harsh conditions such as

desiccation and solar radiation exposure [33]. In both E. blumi eye-

spots and eggs, carotenoids are likely to have photo-protective and

antioxidant function as well. On the other hand, in view of the

ultrastructural data available about tardigrades eye-spots and of

the presence of the same carotenoids throughout the E. blumi body,

we tend to exclude any role of these pigments as light receptors in

this species.

Because of their well-known antioxidant functions, the carote-

noids accumulated in the body cavity might help to protect the

tardigrade from the dehydration-induced oxidative stress which

occurs during the entering and remaining in anhydrobiosis

[34,35]. Organisms undergoing dehydration are known to suffer

oxidative damage to their lipids, proteins and DNA, and tolerance

to drying is correlated with an increase in their antioxidant

potential [34,36]. In E. blumi, the accumulation of free-radical

scavengers such as carotenoids is likely to be one of the possible

strategies, together with other mechanisms that include enzymes

(e.g. peroxidases, catalases, superoxide dismutases) and antiox-

idants (e.g. glutathione) [36,37] to fight the oxidative stress

involved with anhydrobiosis. We simulated oxidative stress due to

dehydration by H2O2 treatment, and then we tested if Raman

micro-spectroscopy was able to measure variations in carotenoid

content in living tardigrades. By measuring in vivo the radical

quenching antioxidant action of carotenoids upon treatment with

H2O2, Raman micro-spectroscopy shows how pigments are

consumed in tardigrades exposed to oxidative stress. Such

a method to monitor carotenoid variations could thus be used to

further investigate in vivo the role of such molecules as antioxidants

in tardigrades during real dehydration or other oxidative stress-

related processes such as exposure to solar radiations.

Conclusions
The method we propose, based on Raman imaging of living

tardigrades, proves to be a reliable method for the investigation of

the nature and function of pigments in tardigrades. It demon-

strates that the pigments observed in the body (including eyes) and

eggs of E. blumi are carotenoids (presumably b-carotene) which
tardigrades obtain from the moss they feed on. The same

spectroscopic method could be used to study other tardigrade

species as well, extending our knowledge on the different kinds of

pigments found in these animals in relation with their habitat and

diet.

Moreover, we propose a role for carotenoids in tardigrades as

scavengers for reactive oxygen species forming during exposition

to solar radiations and/or dehydration processes. We tested this

hypothesis in vivo by simulating the oxidative stress with a H2O2

treatment and measuring the decrease in carotenoid content.
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Considering the lack of methods to study directly the antioxidant

function of carotenoids in vivo [31], pigmented tardigrades,

investigated with Raman imaging, could be used as model

organisms for this purpose.

Supporting Information

Figure S1 Average Raman spectra (black) together with
the intensity standard deviation (grey) from a leaf of the
moss G. orbicularis and from a tardigrade E. blumi. The
averages and standard deviation were calculated out of a set of 300

spectra for each sample, collected in the same experimental

conditions (i.e. acquisition times, microscope objective, laser

power).

(TIF)

Figure S2 Percentage of survival of E. blumi specimens
after 1 h and 24 h upon 15 min of exposure to different
concentrations of hydrogen peroxide. Bars correspond to

standard deviation.

(TIF)

Figure S3 Experimental group. Histograms of the integrated

Raman intensity in the 1460–1570 cm21 region (i.e. integral of the

most intense band) from Raman maps of 8 living E. blumi

specimens before and after exposure to 25 mM of hydrogen

peroxide for 15 min. For each histogram, the corresponding

intensity Raman map depicting the carotenoid distribution (i.e. the

intensity at 1521 cm21) is shown as inset. White scale

bars = 200 mm, color scale bars have units of counts. To the right,

average spectra of Raman maps before (in red) and after (in blue)

the treatment.

(TIF)

Figure S4 Control group. Histograms of the integrated

Raman intensity in the 1460–1570 cm21 region (i.e. integral of

the most intense band) from Raman maps of 8 living E. blumi

specimens before and after 15 min in water. For each histogram,

the corresponding intensity Raman map depicting the carotenoid

distribution (i.e. the intensity at 1521 cm21) is shown as inset.

White scale bars = 200 mm, color scale bars have units of counts.

To the right, average spectra of Raman maps before (in red) the

treatment and after (in blue) the treatment.

(TIF)

Figure S5 Chemical structures of the main carotenoids
(up to ,90% of the total carotenoids) found in Grimmia
mosses (Czeczuga B, 1980, The Bryologist 83:21–28).

(TIF)

Figure S6 Total integrated Raman intensity in the 1460–
1570 cm21 region (summed over the whole map) as an
indicator of the total carotenoids content before (black
bars) and after (white bars) exposure to hydrogen
peroxide solution (A, experimental group) or water (B,
control group) for a total of 16 E. blumi specimens.

(TIF)
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