275 research outputs found

    Appearance of fibronectin during the differentiation of cartilage, bone, and bone marrow.

    Get PDF
    Fibronectin has been localized by indirect immunofluorescence during the various phases of endochondral bone formation in response to subcutaneously implanted demineralized bone matrix. Its histologic appearance has been correlated with results of biosynthetic experiments. (a) The implanted collagenous bone matrix was coated with fibronectin before and during mesenchymal cell proliferation. (b) During proliferation of mesenchymal precursor cells, the newly synthesized extracellular matrix exhibited a fibrillar network of fibronectin. (c) During cartilage differentiation, the fibronectin in the extracellular matrix was apparently masked by proteoglycans, as judged by hyaluronidase treatment. (d) Differentiating chondrocytes exhibited a uniform distribution of fibronectin. (e) Fibronectin was present in a cottony array around osteoblasts during osteogenesis. (f) The developing hematopoietic colonies revealed fibronectin associated with them. Therefore, it appears that fibronectin is ubiquitous throughout the development of endochondral bone and bone marrow

    Importance of geometry of the extracellular matrix in endochondral bone differentiation.

    Get PDF
    Subcutaneous implantation of coarse powders (74-420 micron) of demineralized diaphyseal bone matrix resulted in the local differentiation of endochondral bone. However, implantation of matrix with particle size of 44-74 micron (Fine matrix) did not induce bone. We have recently reported that the dissociative extraction of coarse matrix with 4 M guanidine HCl resulted in a complete loss of the ability of matrix to induce endochondral bone; the total loss of biological activity could be restored by reconstitution of extracted soluble components with inactive residue. To determine the possible biochemical potential of fine matrix to induce bone, the matrix was extracted in 4 M guanidine HCl and the extract was reconstituted with biologically inactive 4 M guanidine HCl-treated coarse bone matrix residue. There was a complete restoration of the biological activity by the extract of fine matrix upon reconstitution with extracted coarse matrix. Polyacrylamide gel electrophoresis of the extract of fine matrix revealed similar protein profiles as seen for the extract of coarse matrix. Gel filtration of the 4 M guanidine HCl extract of fine powder on Sepharose CL-6B and the subsequent reconstitution of various column fractions with inactive coarse residue showed that fractions with proteins of 20,000-50,000 mol wt induced new bone formation. These observations demonstrate that although fine bone matrix contains, osteoinductive proteins, matrix geometry (size) is a critical factor in triggering the biochemical cascade of endochondral bone differentiation. Mixing of coarse matrix with Fine results in partial response and it was confined to areas in contact with coarse particles. The results imply a role for geometry of extracellular bone matrix in anchorage-dependent proliferation and differentiation of cells

    Osteoinduction in human fat derived stem cells by recombinant human bone morphogenetic protein-2 produced in Escherichia coli

    Get PDF
    Bioactive recombinant human bone morphogenetic protein-2 (rhBMP-2) was obtained using Escherichia coli pET-25b expression system: 55 mg purified rhBMP-2 were achieved per g cell dry wt, with up to 95% purity. In murine C2C12 cell line, rhBMP-2 induced an increase in the transcription of Smads and of osteogenic markers Runx2/Cbfa1 and Osterix, measured by semi-quantitative RT-PCR. Bioassays performed in human fat-derived stem cells showed an increased activity of the early osteogenic marker, alkaline phosphatase, and the absence of cytotoxicity

    Multisensory information facilitates reaction speed by enlarging activity difference between superior colliculus hemispheres in rats

    Get PDF
    Animals can make faster behavioral responses to multisensory stimuli than to unisensory stimuli. The superior colliculus (SC), which receives multiple inputs from different sensory modalities, is considered to be involved in the initiation of motor responses. However, the mechanism by which multisensory information facilitates motor responses is not yet understood. Here, we demonstrate that multisensory information modulates competition among SC neurons to elicit faster responses. We conducted multiunit recordings from the SC of rats performing a two-alternative spatial discrimination task using auditory and/or visual stimuli. We found that a large population of SC neurons showed direction-selective activity before the onset of movement in response to the stimuli irrespective of stimulation modality. Trial-by-trial correlation analysis showed that the premovement activity of many SC neurons increased with faster reaction speed for the contraversive movement, whereas the premovement activity of another population of neurons decreased with faster reaction speed for the ipsiversive movement. When visual and auditory stimuli were presented simultaneously, the premovement activity of a population of neurons for the contraversive movement was enhanced, whereas the premovement activity of another population of neurons for the ipsiversive movement was depressed. Unilateral inactivation of SC using muscimol prolonged reaction times of contraversive movements, but it shortened those of ipsiversive movements. These findings suggest that the difference in activity between the SC hemispheres regulates the reaction speed of motor responses, and multisensory information enlarges the activity difference resulting in faster responses
    • …
    corecore