278 research outputs found
Fulvestrant: an oestrogen receptor antagonist with a novel mechanism of action
Due to their favourable tolerability profiles, endocrine therapies have long been considered the treatment of choice for hormone-sensitive metastatic breast cancer. However, the oestrogen agonist effects of the available selective oestrogen receptor modulators, such as tamoxifen, and the development of cross-resistance between endocrine therapies with similar modes of action have led to the need for new treatments that act through different mechanisms. Fulvestrant (‘Faslodex’) is the first of a new type of endocrine treatment – an oestrogen receptor (ER) antagonist that downregulates the ER and has no agonist effects. This article provides an overview of the current understanding of ER signalling and illustrates the unique mode of action of fulvestrant. Preclinical and clinical study data are presented in support of the novel mechanism of action of this new type of ER antagonist
Differential regulation of specific genes in MCF-7 and the ICI 182780-resistant cell line MCF-7/182R-6
To elucidate the mechanisms involved in anti-oestrogen resistance, two human breast cancer cell lines MCF-7 and the ICI 182780-resistant cell line, MCF-7/182R-6, have been compared with regard to oestrogen receptor (ER) expression, ER function, ER regulation, growth requirements and differentially expressed gene products. MCF-7/182R-6 cells express a reduced level of ER protein. The ER protein is functional with respect to binding of oestradiol and the anti-oestrogens tamoxifen, 4-hydroxy-tamoxifen and ICI 182780, whereas expression and oestrogen induction of the progesterone receptor is lost in MCF-7/182R-6 cells. The ER protein and the ER mRNA are regulated similarly in the two cell lines when subjected to treatment with oestradiol or ICI 182780. Oestradiol down-regulates ER mRNA and ER protein expression. ICI 182780 has no initial effect on ER mRNA expression whereas the ER protein level decreases rapidly in cells treated with ICI 182780, indicating a severely decreased stability of the ER protein when bound to ICI 182780. In vitro growth experiments revealed that the ICI 182780-resistant cell line had evolved to an oestradiol-independent phenotype, able to grow with close to maximal growth rate both in the absence of oestradiol and in the presence of ICI 182780. Comparison of gene expression between the two cell lines revealed relatively few differences, indicating that a limited number of changes is involved in the development of anti-oestrogen resistance. Identification of the differentially expressed gene products are currently in progress. © 1999 Cancer Research Campaig
Tamoxifen stimulates arachidonic acid release from rat liver cells by an estrogen receptor-independent, non-genomic mechanism
BACKGROUND: Tamoxifen is widely prescribed for the treatment of breast cancer. Its success has been attributed to the modulation of the estrogen receptor. I have previously proposed that the release of arachidonic acid from cells may also mediate cancer prevention. METHODS: Rat liver cells were radiolabelled with arachidonic acid. The release of [(3)H] arachidonic acid after various times of incubation of the cells with tamoxifen was measured. RESULTS: Tamoxifen, at micromolar concentrations, stimulates arachidonic acid release. The stimulation is rapid and is not affected by pre-incubation of the cells with actinomycin or the estrogen antagonist ICI-182,780. CONCLUSIONS: The stimulation of AA release by tamoxifen is not mediated by estrogen receptor occupancy and is non-genomic
ESR1 amplification is rare in breast cancer and is associated with high grade and high proliferation: a multiplex ligation-dependent probe amplification study
Background: Expression of estrogen receptor alpha (ERα) is predictive for endocrine therapy response and an important prognostic factor in breast cancer. Overexpression of ERα can be caused by estrogen receptor 1 (ESR1) gene amplification and was originally reported to be a frequent event associated with a significantly longer survival for ER-positive women treated with adjuvant tamoxifen monotherapy, which was however questioned by subsequent studies
A phase I trial to assess the pharmacology of the new oestrogen receptor antagonist fulvestrant on the endometrium in healthy postmenopausal volunteers
While tamoxifen use is associated with clear benefits in the treatment of hormone-sensitive breast cancer, it also exhibits partial oestrogen agonist activity that is associated with adverse events, including endometrial cancer. Fulvestrant (‘Faslodex’) is a new oestrogen receptor antagonist that downregulates the oestrogen receptor and has no known agonist effect. This single-centre, double-blind, randomised, parallel-group trial was conducted to determine the direct effects of fulvestrant on the female endometrium when given alone and in combination with the oestrogen, ethinyloestradiol. Following a 14-day, pretrial screening period, 30 eligible postmenopausal volunteers were randomised to receive fulvestrant 250 mg, fulvestrant 125 mg or matched placebo administered as a single intramuscular injection. Two weeks postinjection, volunteers received 2-weeks concurrent exposure to ethinyloestradiol 20 μg day−1. Endometrial thickness was measured before and after the 14-day screening period with further measurements predose (to confirm a return to baseline) and on days 14, 28 and 42 post-treatment with fulvestrant. Pharmacokinetic and safety assessments were performed throughout the trial. Fulvestrant at a dose of 250 mg significantly (P=0.0001) inhibited the oestrogen-stimulated thickening of the endometrium compared with placebo. Neither the 125 mg nor 250 mg doses of fulvestrant demonstrated oestrogenic effects on the endometrium over the initial 14-day assessment period. Fulvestrant was well tolerated and reduced the incidence of ethinyloestradiol-related side effects. At the same dose level that is being evaluated in clinical trials of postmenopausal women with advanced breast cancer, fulvestrant (250 mg) is an antioestrogen with no evidence of agonist activity in the endometrium of healthy postmenopausal women
Diagnosis of lethal or prenatal-onset autosomal recessive disorders by parental exome sequencing.
OBJECTIVE: Rare genetic disorders resulting in prenatal or neonatal death are genetically heterogeneous, but testing is often limited by the availability of fetal DNA, leaving couples without a potential prenatal test for future pregnancies. We describe our novel strategy of exome sequencing parental DNA samples to diagnose recessive monogenic disorders in an audit of the first 50 couples referred. METHOD: Exome sequencing was carried out in a consecutive series of 50 couples who had 1 or more pregnancies affected with a lethal or prenatal-onset disorder. In all cases, there was insufficient DNA for exome sequencing of the affected fetus. Heterozygous rare variants (MAF < 0.001) in the same gene in both parents were selected for analysis. Likely, disease-causing variants were tested in fetal DNA to confirm co-segregation. RESULTS: Parental exome analysis identified heterozygous pathogenic (or likely pathogenic) variants in 24 different genes in 26/50 couples (52%). Where 2 or more fetuses were affected, a genetic diagnosis was obtained in 18/29 cases (62%). In most cases, the clinical features were typical of the disorder, but in others, they result from a hypomorphic variant or represent the most severe form of a variable phenotypic spectrum. CONCLUSION: We conclude that exome sequencing of parental samples is a powerful strategy with high clinical utility for the genetic diagnosis of lethal or prenatal-onset recessive disorders. © 2017 The Authors Prenatal Diagnosis published by John Wiley & Sons Ltd
Comparing the Epidermal Growth Factor Interaction with Four Different Cell Lines: Intriguing Effects Imply Strong Dependency of Cellular Context
The interaction of the epidermal growth factor (EGF) with its receptor (EGFR) is known to be complex, and the common over-expression of EGF receptor family members in a multitude of tumors makes it important to decipher this interaction and the following signaling pathways. We have investigated the affinity and kinetics of 125I-EGF binding to EGFR in four human tumor cell lines, each using four culturing conditions, in real time by use of LigandTracer®
- …