8 research outputs found

    A HML6 endogenous retrovirus on chromosome 3 is upregulated in amyotrophic lateral sclerosis motor cortex.

    Get PDF
    There is increasing evidence that endogenous retroviruses (ERVs) play a significant role in central nervous system diseases, including amyotrophic lateral sclerosis (ALS). Studies of ALS have consistently identified retroviral enzyme reverse transcriptase activity in patients. Evidence indicates that ERVs are the cause of reverse transcriptase activity in ALS, but it is currently unclear whether this is due to a specific ERV locus or a family of ERVs. We employed a combination of bioinformatic methods to identify whether specific ERVs or ERV families are associated with ALS. Using the largest post-mortem RNA-sequence datasets available we selectively identified ERVs that closely resembled full-length proviruses. In the discovery dataset there was one ERV locus (HML6_3p21.31c) that showed significant increased expression in post-mortem motor cortex tissue after multiple-testing correction. Using six replication post-mortem datasets we found HML6_3p21.31c was consistently upregulated in ALS in motor cortex and cerebellum tissue. In addition, HML6_3p21.31c showed significant co-expression with cytokine binding and genes involved in EBV, HTLV-1 and HIV type-1 infections. There were no significant differences in ERV family expression between ALS and controls. Our results support the hypothesis that specific ERV loci are involved in ALS pathology

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    A potent adjuvant effect of CD40 antibody attached to antigen

    No full text
    There is great potential for novel vaccines based on recombinant proteins and synthetic peptides. Unfortunately these antigens often lack the immunogenicity of whole, killed pathogens used in traditional vaccines. Thus there is strong interest in the identification of immunological adjuvants with low reactogenicity, but high potency, to enhance immune responses and realize the potential of these new vaccine strategies. CD40 antibodies have been shown to have adjuvant effects when administered at very high doses. These large doses are impractical and induce a cascade of cytokine release giving rise to septic shock-like symptoms, as well as splenomegaly and polyclonal antibody production. We show here that a very small amount of CD40 antibody can exhibit potent adjuvant effects when attached to soluble antigen. The lack of detectable systemic effects indicates that this method may be a powerful and practical means of enhancing the efficacy of recombinant vaccines
    corecore