377 research outputs found
Dual function filtration and catalytic breakdown of organic pollutants in wastewater using ozonation with titania and alumina membranes
Water recycling via treatment from industrial and/or municipal waste sources is one of the key strategies
for resolving water shortages worldwide. Polymer membranes are effective at improving the water quality
essential for recycling, but depend on regular cleaning and replacement. Pure ceramic membranes
can reduce the cleaning need and last significantly longer in the same applications while possessing the
possibility of operating in more aggressive environments not suitable for polymers. In the current work,
filtration using a tubular ceramic membrane (�-Al2O3 or TiO2) was combined with ozonation to remove
organic compounds present in a secondary effluent to enhance key quality features of the water (colour
and total organic carbon, TOC) for its potential reuse.
‘Bare’ commercial �-Al2O3 filters (pore size
∼0.58 �m) were tested as a microfiltration membrane and
compared with the more advanced catalytically active TiO2 layer that was formed by the sol–gel method.
The presence of anatase with a 4 nm pore size at the membrane surface was confirmed by X-ray diffraction
(XRD) and N2 adsorption. Filtration of the effluent over a 2 h period led to a reduction in flux to 45% and
60% of the initial values for the �-alumina and TiO2 membrane, respectively. However, a brief dose (2 min)
of ozone at the start of the run resulted in reductions to only 70% of the initial flux for both membranes. It
is likely that the oxide’s functional property facilitated the formation of hydroxyl (OH•) or other radicals
on the membrane surface from ozone decomposition which targeted the breakdown of organic foulants
thus inhibiting their deposition. Interestingly, the porous structure therefore acted in a synergistic, dual
function mode to physically separate the particulates while also catalytically breaking down organic
matter. The system also greatly improved the efficiency of membrane filtration for the reduction of
colour, A254 (organics absorption at the wavelength of 254 nm) and TOC. The best performance came
from combined ozonation (2 min ozonation time with an estimated applied ozone dose of 8 mg L−1)
with the TiO2 membrane, which was able to reduce colour by 88%, A254 by 75% and TOC by 43%. It is
clearly evident that a synergistic effect occurs with the process combination of ozonation and ceramic
membrane filtration demonstrating the practical benefit of combining ceramic membrane filtration with
conventional water ozonation
The intronic G13964C variant in p53 is not a high-risk mutation in familial breast cancer in Australia
BACKGROUND: Mutations in BRCA1 and BRCA2 account for approximately 50% of breast cancer families with more than four affected cases, whereas exonic mutations in p53, PTEN, CHK2 and ATM may account for a very small proportion. It was recently reported that an intronic variant of p53 - G13964C - occurred in three out of 42 (7.1%) 'hereditary' breast cancer patients, but not in any of 171 'sporadic' breast cancer control individuals (P = 0.0003). If this relatively frequent occurrence of G13964C in familial breast cancer and absence in control individuals were confirmed, then this would suggest that the G13964C variant plays a role in breast cancer susceptibility. METHOD: We genotyped 71 familial breast cancer patients and 143 control individuals for the G13964C variant using polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) analysis. RESULTS: Three (4.2%; 95% confidence interval [CI] 0–8.9%) G13964C heterozygotes were identified. The variant was also identified in 5 out of 143 (3.5%; 95% CI 0.6–6.4%) control individuals without breast cancer or a family history of breast cancer, however, which is no different to the proportion found in familial cases (P = 0.9). CONCLUSION: The present study would have had 80% power to detect an odds ratio of 4.4, and we therefore conclude that the G13946C polymorphism is not a 'high-risk' mutation for familial breast cancer
Validity and responsiveness of the Clubfoot Assessment Protocol (CAP). A methodological study
BACKGROUND: The Clubfoot Assessment Protocol (CAP) is a multi dimensional instrument designed for longitudinal follow up of the clubfoot deformity during growth. Item reliability has shown to be sufficient. In this article the CAP's validity and responsiveness is studied using the Dimeglio classification scoring as a gold standard. METHODS: Thirty-two children with 45 congenital clubfeet were assessed prospectively and consecutively at ages of new-born, one, two, four months and two years of age. For convergent/divergent construct validity the Spearman's correlation coefficients were calculated. Discriminate validity was evaluated by studying the scores in bilateral clubfeet. The floor-ceiling effects at baseline (untreated clubfeet) and at two years of age (treated clubfeet) were evaluated. Responsiveness was evaluated by using effect sizes (ES) and by calculating if significant changes (Wilcoxons signed test) had occurred between the different measurement occasions. RESULTS: High to moderate significant correlation were found between CAP mobility I and morphology and the Dimeglio scores (r(s )= 0.77 and 0.44 respectively). Low correlation was found between CAP muscle function, mobility II and motion quality and the Dimeglio scoring system (r(s )= 0.20, 0.09 and 0.06 respectively). Of 13 children with bilateral clubfeet, 11 showed different CAP mobility I scores between right and left foot at baseline (untreated) compared with 5 with the Dimeglio score. At the other assessment occasions the CAP mobility I continued to show higher discrimination ability than the Dimeglio. No floor effects and low ceiling effects were found in the untreated clubfeet for both instruments. High ceiling effects were found in the CAP for the treated children and low for the Dimeglio. Responsiveness was good. ES from untreated to treated ranged from 0.80 to 4.35 for the CAP subgroups and was 4.68 for the Dimeglio. The first four treatment months, the CAP mobility I had generally higher ES compared with the Dimeglio. CONCLUSION: The Clubfoot Assessment Protocol shows in this study good validity and responsiveness. The CAP is more responsive when severity ranges between mild – moderate to severe, while the Dimeglio focuses more on the extremes. The ability to discriminate between different mobility status of the right and left foot in bilaterally affected children in this population was higher compared with the Dimeglio score implicating a better sensitivity for the CAP
Translational Up-Regulation and High-Level Protein Expression from Plasmid Vectors by mTOR Activation via Different Pathways in PC3 and 293T Cells
BACKGROUND: Though 293T cells are widely used for expression of proteins from transfected plasmid vectors, the molecular basis for the high-level expression is yet to be understood. We recently identified the prostate carcinoma cell line PC3 to be as efficient as 293T in protein expression. This study was undertaken to decipher the molecular basis of high-level expression in these two cell lines. METHODOLOGY/PRINCIPAL FINDINGS: In a survey of different cell lines for efficient expression of platelet-derived growth factor-B (PDGF-B), β-galactosidase (β-gal) and green fluorescent protein (GFP) from plasmid vectors, PC3 was found to express at 5-50-fold higher levels compared to the bone metastatic prostate carcinoma cell line PC3BM and many other cell lines. Further, the efficiency of transfection and level of expression of the reporters in PC3 were comparable to that in 293T. Comparative analyses revealed that the high level expression of the reporters in the two cell lines was due to increased translational efficiency. While phosphatidic acid (PA)-mediated activation of mTOR, as revealed by drastic reduction in reporter expression by n-butanol, primarily contributed to the high level expression in PC3, multiple pathways involving PA, PI3K/Akt and ERK1/2 appear to contribute to the abundant reporter expression in 293T. Thus the extent of translational up-regulation attained through the concerted activation of mTOR by multiple pathways in 293T could be achieved through its activation primarily by the PA pathway in PC3. CONCLUSIONS/SIGNIFICANCE: Our studies reveal that the high-level expression of proteins from plasmid vectors is effected by translational up-regulation through mTOR activation via different signaling pathways in the two cell lines and that PC3 is as efficient as 293T for recombinant protein expression. Further, PC3 offers an advantage in that the level of expression of the protein can be regulated by simple addition of n-butanol to the culture medium
TCF7L2 variant genotypes and type 2 diabetes risk in Brazil: significant association, but not a significant tool for risk stratification in the general population
<p>Abstract</p> <p>Background</p> <p>Genetic polymorphisms of the <it>TCF7L2 </it>gene are strongly associated with large increments in type 2 diabetes risk in different populations worldwide. In this study, we aimed to confirm the effect of the <it>TCF7L2 </it>polymorphism <it>rs7903146 </it>on diabetes risk in a Brazilian population and to assess the use of this genetic marker in improving diabetes risk prediction in the general population.</p> <p>Methods</p> <p>We genotyped the single nucleotide polymorphisms (SNP) rs7903146 of the <it>TCF7L2 </it>gene in 560 patients with known coronary disease enrolled in the MASS II (Medicine, Angioplasty, or Surgery Study) Trial and in 1,449 residents of Vitoria, in Southeast Brazil. The associations of this gene variant to diabetes risk and metabolic characteristics in these two different populations were analyzed. To access the potential benefit of using this marker for diabetes risk prediction in the general population we analyzed the impact of this genetic variant on a validated diabetes risk prediction tool based on clinical characteristics developed for the Brazilian general population.</p> <p>Results</p> <p>SNP rs7903146 of the <it>TCF7L2 </it>gene was significantly associated with type 2 diabetes in the MASS-II population (OR = 1.57 per T allele, p = 0.0032), confirming, in the Brazilian population, previous reports of the literature. Addition of this polymorphism to an established clinical risk prediction score did not increased model accuracy (both area under ROC curve equal to 0.776).</p> <p>Conclusion</p> <p><it>TCF7L2 </it>rs7903146 T allele is associated with a 1.57 increased risk for type 2 diabetes in a Brazilian cohort of patients with known coronary heart disease. However, the inclusion of this polymorphism in a risk prediction tool developed for the general population resulted in no improvement of performance. This is the first study, to our knowledge, that has confirmed this recent association in a South American population and adds to the great consistency of this finding in studies around the world. Finally, confirming the biological association of a genetic marker does not guarantee improvement on already established screening tools based solely on demographic variables.</p
eXtraembryonic ENdoderm (XEN) Stem Cells Produce Factors that Activate Heart Formation
Initial specification of cardiomyocytes in the mouse results from interactions between the extraembryonic anterior visceral endoderm (AVE) and the nascent mesoderm. However the mechanism by which AVE activates cardiogenesis is not well understood, and the identity of specific cardiogenic factors in the endoderm remains elusive. Most mammalian studies of the cardiogenic potential of the endoderm have relied on the use of cell lines that are similar to the heart-inducing AVE. These include the embryonal-carcinoma-derived cell lines, END2 and PYS2. The recent development of protocols to isolate eXtraembryonic ENdoderm (XEN) stem cells, representing the extraembryonic endoderm lineage, from blastocyst stage mouse embryos offers new tools for the genetic dissection of cardiogenesis.Here, we demonstrate that XEN cell-conditioned media (CM) enhances cardiogenesis during Embryoid Body (EB) differentiation of mouse embryonic stem (ES) cells in a manner comparable to PYS2-CM and END2-CM. Addition of CM from each of these three cell lines enhanced the percentage of EBs that formed beating areas, but ultimately, only XEN-CM and PYS2-CM increased the total number of cardiomyocytes that formed. Furthermore, our observations revealed that both contact-independent and contact-dependent factors are required to mediate the full cardiogenic potential of the endoderm. Finally, we used gene array comparison to identify factors in these cell lines that could mediate their cardiogenic potential.These studies represent the first step in the use of XEN cells as a molecular genetic tool to study cardiomyocyte differentiation. Not only are XEN cells functionally similar to the heart-inducing AVE, but also can be used for the genetic dissection of the cardiogenic potential of AVE, since they can be isolated from both wild type and mutant blastocysts. These studies further demonstrate the importance of both contact-dependent and contact-independent factors in cardiogenesis and identify potential heart-inducing proteins in the endoderm
A Comparative Analysis of Extra-Embryonic Endoderm Cell Lines
Prior to gastrulation in the mouse, all endodermal cells arise from the primitive
endoderm of the blastocyst stage embryo. Primitive endoderm and its derivatives
are generally referred to as extra-embryonic endoderm (ExEn) because the
majority of these cells contribute to extra-embryonic lineages encompassing the
visceral endoderm (VE) and the parietal endoderm (PE). During gastrulation, the
definitive endoderm (DE) forms by ingression of cells from the epiblast. The DE
comprises most of the cells of the gut and its accessory organs. Despite their
different origins and fates, there is a surprising amount of overlap in marker
expression between the ExEn and DE, making it difficult to distinguish between
these cell types by marker analysis. This is significant for two main reasons.
First, because endodermal organs, such as the liver and pancreas, play important
physiological roles in adult animals, much experimental effort has been directed
in recent years toward the establishment of protocols for the efficient
derivation of endodermal cell types in vitro. Conversely,
factors secreted by the VE play pivotal roles that cannot be attributed to the
DE in early axis formation, heart formation and the patterning of the anterior
nervous system. Thus, efforts in both of these areas have been hampered by a
lack of markers that clearly distinguish between ExEn and DE. To further
understand the ExEn we have undertaken a comparative analysis of three ExEn-like
cell lines (END2, PYS2 and XEN). PYS2 cells are derived from embryonal
carcinomas (EC) of 129 strain mice and have been characterized as parietal
endoderm-like [1], END2 cells are derived from P19 ECs and
described as visceral endoderm-like, while XEN cells are derived from blastocyst
stage embryos and are described as primitive endoderm-like. Our analysis
suggests that none of these cell lines represent a bona fide
single in vivo lineage. Both PYS2 and XEN cells represent mixed
populations expressing markers for several ExEn lineages. Conversely END2 cells,
which were previously characterized as VE-like, fail to express many markers
that are widely expressed in the VE, but instead express markers for only a
subset of the VE, the anterior visceral endoderm. In addition END2 cells also
express markers for the PE. We extended these observations with microarray
analysis which was used to probe and refine previously published data sets of
genes proposed to distinguish between DE and VE. Finally, genome-wide pathway
analysis revealed that SMAD-independent TGFbeta signaling through a TAK1/p38/JNK
or TAK1/NLK pathway may represent one mode of intracellular signaling shared by
all three of these lines, and suggests that factors downstream of these pathways
may mediate some functions of the ExEn. These studies represent the first step
in the development of XEN cells as a powerful molecular genetic tool to study
the endodermal signals that mediate the important developmental functions of the
extra-embryonic endoderm. Our data refine our current knowledge of markers that
distinguish various subtypes of endoderm. In addition, pathway analysis suggests
that the ExEn may mediate some of its functions through a non-classical MAP
Kinase signaling pathway downstream of TAK1
A Diverse and Flexible Teaching Toolkit Facilitates the Human Capacity for Cumulative Culture
© 2017, The Author(s). Human culture is uniquely complex compared to other species. This complexity stems from the accumulation of culture over time through high- and low-fidelity transmission and innovation. One possible reason for why humans retain and create culture, is our ability to modulate teaching strategies in order to foster learning and innovation. We argue that teaching is more diverse, flexible, and complex in humans than in other species. This particular characteristic of human teaching rather than teaching itself is one of the reasons for human’s incredible capacity for cumulative culture. That is, humans unlike other species can signal to learners whether the information they are teaching can or cannot be modified. As a result teaching in humans can be used to support high or low fidelity transmission, innovation, and ultimately, cumulative culture
Distinct Functions of Period2 and Period3 in the Mouse Circadian System Revealed by In Vitro Analysis
The mammalian circadian system, which is composed of a master pacemaker in the suprachiasmatic nuclei (SCN) as well as other oscillators in the brain and peripheral tissues, controls daily rhythms of behavior and physiology. Lesions of the SCN abolish circadian rhythms of locomotor activity and transplants of fetal SCN tissue restore rhythmic behavior with the periodicity of the donor's genotype, suggesting that the SCN determines the period of the circadian behavioral rhythm. According to the model of timekeeping in the SCN, the Period (Per) genes are important elements of the transcriptional/translational feedback loops that generate the endogenous circadian rhythm. Previous studies have investigated the functions of the Per genes by examining locomotor activity in mice lacking functional PERIOD proteins. Variable behavioral phenotypes were observed depending on the line and genetic background of the mice. In the current study we assessed both wheel-running activity and Per1-promoter-driven luciferase expression (Per1-luc) in cultured SCN, pituitary, and lung explants from Per2−/− and Per3−/− mice congenic with the C57BL/6J strain. We found that the Per2−/− phenotype is enhanced in vitro compared to in vivo, such that the period of Per1-luc expression in Per2−/− SCN explants is 1.5 hours shorter than in Per2+/+ SCN, while the free-running period of wheel-running activity is only 11 minutes shorter in Per2−/− compared to Per2+/+ mice. In contrast, circadian rhythms in SCN explants from Per3−/− mice do not differ from Per3+/+ mice. Instead, the period and phase of Per1-luc expression are significantly altered in Per3−/− pituitary and lung explants compared to Per3+/+ mice. Taken together these data suggest that the function of each Per gene may differ between tissues. Per2 appears to be important for period determination in the SCN, while Per3 participates in timekeeping in the pituitary and lung
- …