100 research outputs found

    Neural networks for modeling gene-gene interactions in association studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our aim is to investigate the ability of neural networks to model different two-locus disease models. We conduct a simulation study to compare neural networks with two standard methods, namely logistic regression models and multifactor dimensionality reduction. One hundred data sets are generated for each of six two-locus disease models, which are considered in a low and in a high risk scenario. Two models represent independence, one is a multiplicative model, and three models are epistatic. For each data set, six neural networks (with up to five hidden neurons) and five logistic regression models (the null model, three main effect models, and the full model) with two different codings for the genotype information are fitted. Additionally, the multifactor dimensionality reduction approach is applied.</p> <p>Results</p> <p>The results show that neural networks are more successful in modeling the structure of the underlying disease model than logistic regression models in most of the investigated situations. In our simulation study, neither logistic regression nor multifactor dimensionality reduction are able to correctly identify biological interaction.</p> <p>Conclusions</p> <p>Neural networks are a promising tool to handle complex data situations. However, further research is necessary concerning the interpretation of their parameters.</p

    Application of next generation sequencing to CEPH cell lines to discover variants associated with FDA approved chemotherapeutics

    Get PDF
    After publication of this work [1], it has come to our attention that there is an error in the author list of the initial version of this manuscript; rather than Ernest J Lam, the second author of the manuscript should be listed as Ernest T Lam

    Grammatical evolution decision trees for detecting gene-gene interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A fundamental goal of human genetics is the discovery of polymorphisms that predict common, complex diseases. It is hypothesized that complex diseases are due to a myriad of factors including environmental exposures and complex genetic risk models, including gene-gene interactions. Such epistatic models present an important analytical challenge, requiring that methods perform not only statistical modeling, but also variable selection to generate testable genetic model hypotheses. This challenge is amplified by recent advances in genotyping technology, as the number of potential predictor variables is rapidly increasing.</p> <p>Methods</p> <p>Decision trees are a highly successful, easily interpretable data-mining method that are typically optimized with a hierarchical model building approach, which limits their potential to identify interacting effects. To overcome this limitation, we utilize evolutionary computation, specifically grammatical evolution, to build decision trees to detect and model gene-gene interactions. In the current study, we introduce the Grammatical Evolution Decision Trees (GEDT) method and software and evaluate this approach on simulated data representing gene-gene interaction models of a range of effect sizes. We compare the performance of the method to a traditional decision tree algorithm and a random search approach and demonstrate the improved performance of the method to detect purely epistatic interactions.</p> <p>Results</p> <p>The results of our simulations demonstrate that GEDT has high power to detect even very moderate genetic risk models. GEDT has high power to detect interactions with and without main effects.</p> <p>Conclusions</p> <p>GEDT, while still in its initial stages of development, is a promising new approach for identifying gene-gene interactions in genetic association studies.</p

    Neural networks for genetic epidemiology: past, present, and future

    Get PDF
    During the past two decades, the field of human genetics has experienced an information explosion. The completion of the human genome project and the development of high throughput SNP technologies have created a wealth of data; however, the analysis and interpretation of these data have created a research bottleneck. While technology facilitates the measurement of hundreds or thousands of genes, statistical and computational methodologies are lacking for the analysis of these data. New statistical methods and variable selection strategies must be explored for identifying disease susceptibility genes for common, complex diseases. Neural networks (NN) are a class of pattern recognition methods that have been successfully implemented for data mining and prediction in a variety of fields. The application of NN for statistical genetics studies is an active area of research. Neural networks have been applied in both linkage and association analysis for the identification of disease susceptibility genes

    Associations between SNPs in candidate immune-relevant genes and rubella antibody levels: a multigenic assessment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mechanisms of immune response are structured within a highly complex regulatory system. Genetic associations with variation in the immune response to rubella vaccine have typically been assessed one locus at a time. We simultaneously assessed the associations between 726 SNPs tagging 84 candidate immune response genes and rubella-specific antibody levels. Blood samples were obtained from 714 school-aged children who had received two doses of MMR vaccine. Associations between rubella-specific antibody levels and 726 candidate tagSNPs were assessed both one SNP at a time and in a variety of multigenic analyses.</p> <p>Results</p> <p>Single-SNP assessments identified 4 SNPs that appeared to be univariately associated with rubella antibody levels: rs2844482 (p = 0.0002) and rs2857708 (p = 0.001) in the 5'UTR of the LTA gene, rs7801617 in the 5'UTR of the IL6 gene (p = 0.0005), and rs4787947 in the 5'UTR of the IL4R gene (p = 0.002). While there was not significant evidence in favor of epistatic genetic associations among the candidate SNPs, multigenic analyses identified 29 SNPs significantly associated with rubella antibody levels when selected as a group (p = 0.017). This collection of SNPs included not only those that were significant univariately, but others that would not have been identified if only considered in isolation from the other SNPs.</p> <p>Conclusions</p> <p>For the first time, multigenic assessment of associations between candidate SNPs and rubella antibody levels identified a broad number of genetic associations that would not have been deemed important univariately. It is important to consider approaches like those applied here in order to better understand the full genetic complexity of response to vaccination.</p

    A General Framework for Formal Tests of Interaction after Exhaustive Search Methods with Applications to MDR and MDR-PDT

    Get PDF
    The initial presentation of multifactor dimensionality reduction (MDR) featured cross-validation to mitigate over-fitting, computationally efficient searches of the epistatic model space, and variable construction with constructive induction to alleviate the curse of dimensionality. However, the method was unable to differentiate association signals arising from true interactions from those due to independent main effects at individual loci. This issue leads to problems in inference and interpretability for the results from MDR and the family-based compliment the MDR-pedigree disequilibrium test (PDT). A suggestion from previous work was to fit regression models post hoc to specifically evaluate the null hypothesis of no interaction for MDR or MDR-PDT models. We demonstrate with simulation that fitting a regression model on the same data as that analyzed by MDR or MDR-PDT is not a valid test of interaction. This is likely to be true for any other procedure that searches for models, and then performs an uncorrected test for interaction. We also show with simulation that when strong main effects are present and the null hypothesis of no interaction is true, that MDR and MDR-PDT reject at far greater than the nominal rate. We also provide a valid regression-based permutation test procedure that specifically tests the null hypothesis of no interaction, and does not reject the null when only main effects are present. The regression-based permutation test implemented here conducts a valid test of interaction after a search for multilocus models, and can be applied to any method that conducts a search to find a multilocus model representing an interaction

    Rule based classifier for the analysis of gene-gene and gene-environment interactions in genetic association studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several methods have been presented for the analysis of complex interactions between genetic polymorphisms and/or environmental factors. Despite the available methods, there is still a need for alternative methods, because no single method will perform well in all scenarios. The aim of this work was to evaluate the performance of three selected rule based classifier algorithms, RIPPER, RIDOR and PART, for the analysis of genetic association studies.</p> <p>Methods</p> <p>Overall, 42 datasets were simulated with three different case-control models, a varying number of subjects (300, 600), SNPs (500, 1500, 3000) and noise (5%, 10%, 20%). The algorithms were applied to each of the datasets with a set of algorithm-specific settings. Results were further investigated with respect to a) the Model, b) the Rules, and c) the Attribute level. Data analysis was performed using WEKA, SAS and PERL.</p> <p>Results</p> <p>The RIPPER algorithm discovered the true case-control model at least once in >33% of the datasets. The RIDOR and PART algorithm performed poorly for model detection. The RIPPER, RIDOR and PART algorithm discovered the true case-control rules in more than 83%, 83% and 44% of the datasets, respectively. All three algorithms were able to detect the attributes utilized in the respective case-control models in most datasets.</p> <p>Conclusions</p> <p>The current analyses substantiate the utility of rule based classifiers such as RIPPER, RIDOR and PART for the detection of gene-gene/gene-environment interactions in genetic association studies. These classifiers could provide a valuable new method, complementing existing approaches, in the analysis of genetic association studies. The methods provide an advantage in being able to handle both categorical and continuous variable types. Further, because the outputs of the analyses are easy to interpret, the rule based classifier approach could quickly generate testable hypotheses for additional evaluation. Since the algorithms are computationally inexpensive, they may serve as valuable tools for preselection of attributes to be used in more complex, computationally intensive approaches. Whether used in isolation or in conjunction with other tools, rule based classifiers are an important addition to the armamentarium of tools available for analyses of complex genetic association studies.</p
    corecore